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ABSTRACT

Trustworthy Cyber-Physical Networks by Design: Toward a System

Scientific Foundation for Security and Resilience in a Connected World

by

Juntao Chen

Advisor: Prof. Quanyan Zhu, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

May 2020

With the remarkable growth of the information and communication technologies

over the past few decades, the Internet of Things (IoT) is enabling ubiquitous

connectivity of heterogeneous physical devices with software, sensors, and actuators.

These cyber-physical integrations provide an effective solution for the development

of smart cities, including industrial control systems, intelligent transportation,

smart grids, robotics, and cloud computing systems, all of which can be seen as

cyber-physical systems (CPS).
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Though IoT enables a highly connected world, the security of IoT-enabled CPS

becomes an increasingly critical concern, as the adversarial threats can come from

both cyber and physical domains. A significant amount of attention has been

attracted from cybersecurity experts to prevent attacks from happening. However,

lessons from the advanced persistent threats have highlighted that perfect security

is not always possible or cost-prohibitive. Hence, resilience plays a significant role

to complement the imperfect security in CPS applications. Achieving security and

resilience simultaneously is challenging, especially knowing that CPS networks are

multi-layer with complex interdependencies in nature.

In this dissertation, we take a gestalt view and develop a holistic design frame-

work for achieving best-effort security and resilience. The research establishes an

interdisciplinary systems and computational science foundation for proactive, agile,

and provably-correct security and resilience of CPS. This dissertation leverages

techniques from diverse disciplines, including game and control theory, complex

networks, artificial intelligence, optimization, economics, and operation research.

After presenting motivation and background on cyber-physical systems’ secu-

rity and resiliency in Chapter 1, we provide some preliminaries on game theory,

mechanism design, and network science in Chapter 2. The main component of this

dissertation is divided into the following three parts: 1) strategic CPS network

design (Chapters 3 and 4), 2) trustworthy decision making over CPS networks

(Chapters 5 and 6), and 3) mechanism design for CPS network economics (Chapters

7 and 8).

IoT-enabled CPS are vulnerable to cyber attacks, resulting in link removals in

IoT communication networks. Chapter 3 is devoted to developing a heterogeneous

multi-layer IoT network design framework in which a network designer can add
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links to provide additional communication paths between two nodes or secure links

against attacks by investing resources. The goal of the designer is to maintain

the connectivity of multi-layer CPS under adversarial threats. We characterize

the optimal design of secure IoT network and develop an algorithm to construct

networks that satisfy heterogeneous network security specifications. The proposed

scheme guarantees the resistance of each layer in the IoT network to a predefined

level of malicious attacks with minimum resources.

Cyber attackers are usually strategic in channelizing their attacking resources,

aiming to inflict the most damage to the targeted infrastructure system. The

defender thus needs to decide how to optimally allocate his constrained security

resources. To this end, Chapter 4 establishes a two-player three-stage game to

capture the dynamics in the infrastructure protection and recovery phases. With

costs for creating and removing links, the two players aim to maximize their

utilities while minimizing the costs. We use subgame perfect equilibrium (SPE) to

characterize the optimal strategies of the network defender and attacker and derive

the SPE explicitly in terms of system parameters. We also give guidelines on the

resilience planning for the defender by considering the strategic timing of attack.

In Chapter 5, we investigate the security investment in the IoT network with a

consideration of human’s bounded rational behavior. This research is motivated

by the fact that users cannot be aware of the security policies taken by all its

connected neighbors due to the IoT’s massive connectivity. Instead, a user makes

security decisions based on the cyber risks by observing a selected number of nodes.

We propose a model that incorporates this limited attention nature of users/players.

Each individual first builds a sparse cognitive network of nodes to respond to and

then determines his security investment by minimizing his own real-world security
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cost. We propose a games-in-games framework and characterize the decisions of

agents by Gestalt Nash equilibrium (GNE). We also design an iterative algorithm

to compute the GNE.

After investigating the security measures for static CPS networks, in Chapter 6,

we shift our focus to the secure and resilient control of mobile autonomous systems

(MAS). Multiple heterogeneous MAS can be integrated together as a multi-layer

MAS network to offer holistic services. To design real-time secure operational

strategies, we need to address the challenges of the uncoordinated nature between

different layers of networks, the evolution of physical systems, and the strategic

adversarial attacks. We again establish a games-in-games framework where the

inner games capture the local agent-adversary type interactions, and the outer

games capture the system-system level interactions. We characterize the solution

of the composed game via meta-equilibrium, and design a decentralized algorithm

to achieve the desirable secure configuration of MAS.

In Chapter 7, we focus on the mechanism design for on-demand provision of

security service in the cloud-enabled Internet of controlled things (IoCT). We

establish a holistic framework that integrates the cyber-physical layers of a cloud-

enabled IoCT through the lens of contract theory. At the physical layer, the device

uses cloud services to operate the system. The quality of cloud services is unknown

to the device, and hence the device designs a menu of contracts to enable a reliable

and incentive-compatible service. Based on the received contracts, the cloud service

provider (SP) serves the device by determining its optimal cyber defense strategy.

By focusing on two quality of service types of cloud SPs, we find that the contract

design can be divided into two regimes, which are directly related to the requirement

on the physical performance by the devices.
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Chapter 8 continues to investigate the risk management over CPS networks

but from a dynamic contract design perspective by considering the risk evolvement

and propagation features. The considered setting includes two parties, asset owner

(principal) and cybersecurity professionals (agent), where the principal delegates the

risk management tasks to the agent by remunerating him for his efforts that are not

directly observable. Under this information pattern, the principal aims to minimize

the systemic cyber risks by designing a contract that specifies the compensation

flows by taking into account the agent’s incentives. We address the challenge of

information asymmetry in contract design by proposing a three-step approach:

estimation, verification, and control. Under mild conditions, we reveal a separation

principle and a new certainty equivalence principle for dynamic principle-agent

problems.

As CPS will pervade more facets of our life in the coming decades, they should

be designed with a higher level of trustworthiness and confidence. There are many

exciting future works to expedite CPS realizations. Chapter 9 explores and outlines

a number of these future directions, including the security of learning algorithms

for complex CPS, distributed intelligence for large-scale societal CPS, and cyber

deception for CPS security.
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Background and Motivation
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Chapter 1

Introduction

1.1 Cyber-Physical System Security

The massive deployment of Internet of Things (IoT) devices enables the effective

and workable smart city solutions to improve the quality of life of people. These

smart devices create an increasingly connected world by integrating heterogeneous

infrastructure, communication, and network components together to offer holistic

services, yielding complex cyber-physical systems (CPS). In modern CPS applica-

tions, not only does the connectivity of one network itself grow but also networks

are interconnected and interdependent. For example, the recent advances in smart

grid technologies have witnessed the integration of power grids with communication

networks. Transportation networks are connected with social networks through

digital platforms for on-demand services. Robotic systems are teaming with humans

to execute collaborative mission-critical tasks.

On one hand, the highly interconnected CPS increases the system’s efficiency in

many aspects including faster information dissemination and efficient coordinated
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Figure 1.1: Universal adversarial attacks in modern CPS networks where the attack
surface includes sensors, comunications, controllers, and actuators. The attacker
can exploit the vulnerability in these components and compromise the networks
from both the cyber and physical domains.

decision-making. On the other hand, it creates new challenges for the CPS operators

to improve the system security and resiliency at different scales against hazards

from nature, terrorism, and deliberate cyber attacks. A high level of security and

resiliency of CPS is extremely critical as a single point failure in one physical system

may cascade to other systems due to their interdependencies. Besides, comparing

with direct attacks on physical systems, in modern CPS, the attackers can exploit

the vulnerabilities in the cyber domain to achieve their malicious goals remotely.

Furthermore, the multi-layer integration offers opportunities for adversaries to

launch coordinated cyber-physical attacks, which could lead to more catastrophic

outcomes. Figure 1.1 illustrates this phenomenon by showing that the attacker

can compromise the CPS through many possible means, including the attacks to

sensors, communication channels, and physical control systems of the associated

applications. The statistics have shown that the economy loss due to cyberattacks
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on critical infrastructure assets can be up to $1 trillion every year with the number

expected to increase in 2021 [130].

Therefore, with the prevailing adversarial threats from both cyber and physical

domains, safeguarding CPS from attacks is inevitably an urgent task to system

operators. Recently, a significant amount of attention has been given to prevent

the attacks from happening. However, lessons from the advanced persistent threats

have shown that perfect security is not always possible or cost-prohibitive [26, 119].

Therefore, infrastructure operators need to invest in the system’s resilience capability,

which is an equally important property to complement the imperfect security in

CPS applications.

Achieving CPS security and resilience simultaneously is extremely challenging.

Instead of designing operational strategies for cyber and physical layers separately,

we need to take a holistic view and develop an integrative framework for achiev-

ing best-effort security and resilience. To this end, this dissertation focuses on

establishing an interdisciplinary systems and computational science foundation

for the proactive, agile, and provably-correct security and resilience of CPS. The

established frameworks and results aim to contribute to large-scale implementation

and management of trustworthy CPS, such as autonomous systems, industrial

control systems, transportation systems, and smart grids.

1.2 Enhancing CPS Security and Resiliency

To design modern CPS with built-in security and resiliency, we need to ad-

dress multiple key challenges. First, the performance of CPS networks relies on

collaborative operations of each system component. Hence, how to design the
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Figure 1.2: Three key aspects in enhancing the CPS security and resiliency: network
design, network management, and network economics.

network strategically for maintaining connectivity under the adversarial attacks

is a critical task. Second, CPS networks can be dynamic in nature, e.g., robotics

and autonomous vehicles. Hence, it is important for the system designer to take

into account the complex system dynamics and changing adversarial environment

during the trustworthy real-time decision making. Moreover, the dynamic CPS

may consist of heterogeneous agents owned by different parties. Thus, the decision

should be designed in a decentralized fashion. Third, in the connected massive

IoT networks, the users may not observe all the security policies taken by their

connected neighbors due to cognitive limitation. Therefore, it is also important

to understand how to make security investment optimally to mitigate the cyber

risks under the user’s bounded rationality. Fourth, risk management as a service

is an important concept. As the complexity of managing enterprise assets grows,

it becomes harder for asset owners to manage the cyber risks of a large number

of devices and the induced systemic risk due to their massive connectivity. There
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is a need to outsource the challenging risk management tasks to cybersecurity

professionals. The mitigation of the cyber risk involving a third party calls for an

appropriate design of cyber contract and cyber insurance mechanisms.

There is no single solution to address all these challenges simultaneously. Instead,

it requires us to develop secure strategies for complex CPS networks at different

levels, ranging from network design, network management, to network economics.

Figure 1.2 depicts the goals of each chapter in this dissertation toward building

trustworthy CPS networks.

1.2.1 Strategic Network Design

The connectivity of IoT networks plays an important role in information dis-

semination. On the one hand, devices can communicate directly with other devices

in the underlaid network for local information. On the other hand, devices can

also communicate with the infrastructure networks to maintain a global situational

awareness. In addition, for IoT devices with insufficient on-board computational

resources, such as wearables and drones, they can outsource heavy computations

to the data centers through cloud networks, and hence extend the battery life-

time. IoT-enabled CPS networks are vulnerable to cyber attacks including the

denial-of-service (DoS) and jamming attacks. These adversarial attacks can lead to

communication link removals in IoT networks.

Therefore, to maintain the connectivity of devices, IoT networks need to be

secure and resistant to malicious attacks. For example, V2V communication links

of a car can be jammed. As a result, it loses the real-time traffic information of

the road which may further cause traffic delays and accidents especially in the

futuristic self-driving applications. Internet of Battlefield Things (IoBT) is another
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Figure 1.3: In IoBT networks, a team of UAVs and a group of soldiers and
UGVs execute missions cooperatively. The agents in the battlefield share critical
information through D2D communications. The UAV network and ground network
form a two-layer network which faces cyber threats, e.g., jamming attacks which
can lead to link removals.

example of mission-critical IoT systems. As depicted in Fig. 1.3, in IoBT networks,

a team of unmanned aerial vehicles (UAVs) serves as one layer of wireless relay

nodes for a team of unmanned ground vehicles (UGVs) and soldiers equipped

with wearable devices to communicate between themselves or exchange critical

information with the command-and-control nodes. The UAV network and the

ground network naturally form a two-layer network in a battlefield, which can be

susceptible to jamming attacks. It is essential to design communication networks

that can allow the IoBT networks to be robust to natural failures and secure to

cyber attacks in order to keep a high-level situational awareness of agents in a

battlefield.

Due to heterogeneous and multi-tier features of the IoT networks, the required

security levels can vary for different networks. For example, in IoBT networks,

the connectivity of UAV networks requires a higher security level than the ground

network if the UAVs are more likely to be targeted by the adversary. Therefore, it is
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imperative to design secure IoT networks resistant to link attacks and maintain the

two-layer network connectivity with heterogeneous security requirements simultane-

ously. To enhance the security and the robustness of the network, an IoT network

designer can add extra links to provide additional communication paths between

two nodes or secure links against failures by investing resources to protect the

links. The goal of the multi-tier network design is to make the network connectivity

resistant to link removal attacks by anticipating the worst attack behaviors.

As discussed above, adding link redundancy is an effective approach to increase

the security level of CPS networks. However, it becomes expensive when the cost for

creating links is costly, especially knowing that the attacker is powerful. Therefore,

the system designer also needs to invest on the resiliency to recover the system

after its compromise. Recovering the CPS network from attack is a top priority

for designers especially in the service-oriented critical infrastructures including

electric power and communication networks. With a limited budget of resources,

it is essential to develop an optimal post-attack healing mechanism as well as a

pre-attack secure mechanism holistically and understand the fundamental tradeoffs

between security and resilience in the infrastructures. To this end, dynamic game

approach provides a quantitative framework to analyze the interactions between the

system defender and attacker, where the CPS network designer aims to keep the

network connected before and after the attack, while the objective of the adversary

is to keep the network disconnected after the attack.

The resilience of the CPS network is characterized by the capability of the

network to maintain connectivity after the attack and the time it takes to heal the

network. The security of the CPS is characterized by the capability of the network

to combat and withstand the attack before healing. Adding a large number of
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redundancies to the network can prevent the attack from disconnecting the network,

but this approach can be costly. Hence, it is important to make strategic decisions

and planning to yield a joint protection and recovery mechanism for the CPS at a

minimum cost.

1.2.2 Trustworthy Decision Making

In cyber networks, security management and practices of users are often viewed

as the weakest link [137]. The lack of security awareness and expertise at the

user’s end creates human-induced vulnerabilities that can be easily exploited by an

adversary, exacerbating the insecurity of IoT. Hence, in the IoT, each device owner

or system manager needs to allocate resources (e.g. human resources, computing

resources, investments or cognition) to secure his applications.

The security policy of one device can have an impact on the security risk of

nodes that are connected to it. Since various users own different devices, the

security management in IoT is decentralized in nature. Therefore, the process of

decentralized security decision making can be modeled as a game problem in which

each user strategically allocates his resources to secure the devices. For example, in

smart and connected communities as depicted in Fig 1.4, each household needs to

safely configure its network and regularly updates its software and password of the

IoT devices to secure the network. In this game, the users’ risks are reduced when

their connected neighbors are of high-level security. Due to the complex and massive

connections, users cannot be aware of the security policies taken by all its connected

neighbors. Instead, a user can only make security decisions based on the cyber risk

by observing a selected number of nodes. This fact indicates that the game model

needs to take into account the bounded rationality of players. Therefore, to make
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Smart and connected community

Figure 1.4: IoT-enabled interconnected smart community. The connectivity, on one
hand, enhances the situational awareness of smart homes. However, it increses the
cyber risks of the community. Hence, the cyber security of each household not only
dependents on its own risk management strategy but also the ones of connected
neighbors. Secure and decentralized decision making is necessary for each agent in
the network.

trustworthy decisions in IoT networks, the users need to determine their security

investment as well as allocate their attention resources in a holistic manner.

Other than managing security risks over static IoT networks, providing trustwor-

thy decision support for dynamic CPS is another important topic. Dynamic CPS

has a vast number of applications including mobile robotics, autonomous vehicles,

etc. Similar to the static CPS networks, the connectivity of multi-agent mobile

autonomous systems (MAS) is important, since a higher connectivity enables faster

information spreading and hence a high-level of situational awareness. Maintaining

the connectivity of MAS network is challenging. First, cybersecurity is a critical

concern to MAS, as robots are prone to adversarial attacks; e.g., the communication

links between robots can be jammed which decreases the connectivity. Another
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challenge comes from the incoordination between different layers of MAS. For

example, in the two-layer UAV and UGV mobile networks, though the objectives

of two network operators are aligned, the UAVs are operated by one entity while

the UGVs is operated by another. The lack of the centralized planning can result

in insufficient coordination between two networks and lead to disruptions in con-

nectivity and security vulnerabilities. Therefore, secure control of the multi-layer

MAS networks is critical to maintain the global system performance at a high

level. Then the objective becomes how to capture the interactions between mobile

agents within a network and across networks and enable the design of distributed

control algorithms that can maintain the connectivity in both adversarial and

non-adversarial environments.

1.2.3 Mechanism Design for Cyber-Physical Risk Transfer

Cyber contract and insurance mechanism design is another approach that can

be used to manage risks in CPS. We next describe two scenarios including a static

contract mechanism for security as a service in the cloud-enabled IoT and a dynamic

contract for systemic cyber risks management in the interdependent enterprise

network.

In IoT applications where physical systems play a critical role, such as smart

grid and autonomous driving, the sensing, actuation and control of devices in the

IoT have given rise to an expanded term: Internet of Controlled Things (IoCT).

A cloud-enabled IoCT allows heterogeneous components to provide services in an

integrated system. However, the cloud layer can be insecure, since it faces cyber

threats, and malicious attackers can steal or infer keys used to authenticate devices

in the cloud-enabled IoCT. These types of attacks are known as advanced persistent
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threats (APTs) [129]. The traditional cryptography approaches are not sufficient to

deal with this class of attacks, since APTs lead to complete compromise of the cloud

without the detection of network administrators. Some real-world examples of APTs

include the Stuxnet which broke down approximately one fifth of nuclear centrifuges

in Iran [97]. In addition, the operation “Red October” compromised the network

systems of a large number of diplomatic, governmental and scientific research

organizations to steal credential data in various countries across the world [138].

Due to the stealthiness and persistent nature of APTs, the cyber defense against

APTs should shift from the focus on designing perfect security using cryptographic

methods to best-effort strategic defense by optimally allocating constrained security

resources.

To this end, contract-based game-theoretic framework offers a way to model

the security of the cloud. The performance of the physical system is closely related

to the security of the cloud. To use the cloud services, the device needs to plan

and buy services from the cloud to fulfill its control task. Based on contract theory,

the service relationships between the device and cloud SP further create a new

paradigm of security as a service in the cloud-enabled IoCT. This mechanism

design approach enables an on-demand service provision of security and a pricing

mechanism to service real-time cloud-enabled IoCT. Furthermore, this paradigm

provides reliable ways to deliver critical IT services to future IoTs.

Cyber contract mechanism is also useful in managing dynamic systemic risks.

The complex interdependencies between nodes and fast evolution nature of threats

have made it challenging to mitigate systemic risks of enterprise network and

thus requires expert knowledge from cyber domains. As depicted in Fig. 1.5, the

asset owners or system operators can delegate tasks of risk management including
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Figure 1.5: Systemic cyber risk management for enterprise network. The asset
owner (principal) delegates the risk management tasks, e.g., network monitoring
and software patching, to security professionals (agents) by designing a contract
which specifies the remuneration schemes. The amount of remuneration is directly
related to the systemic risk outcome of the network.

security hardening and risk mitigation to security professionals. The owner can

be viewed as a principal who employs a security professional to fulfill tasks that

include monitoring the network, patching the software and devices, and recovering

machines from failures. The security professionals can be viewed as an agent whose

efforts are remunerated by the principal. This principal-agent type of interaction

models the service relationships between the two parties. The effort of the agent

can be measured by the hours he spends on the security tasks. Moreover, the

amount of allocated effort has a direct impact on the systemic cyber risk. For

example, with more frequent scans on suspicious files and the Internet traffic at

each node, the cyber risk becomes low and less likely to spread. An agent plays

an important role in systemic risk as he can determine the amount of his effort

and the way of distributing efforts on protecting nodes over the network. Hence,

it is essential for the principal to incentivize the agent to distribute his resources
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desirably to protect the network.

One feature in designing this type of mechanism is the lack of knowledge of the

principal about the effort spent by the agent. This is reflected by the fact that the

principal is only able to observe risk outcomes, e.g., the denial or failures of services

and conspicuous performance degradation. Moreover, due to the randomness in

the cyber network, e.g., the biased assessment of risks and the unknown attack

behaviors, the cyber risk evolves under uncertainties, making it difficult for the

principal to infer the exact effort of the agent from the observations. This type of

incomplete information structure is called moral hazard in contracts. The asset

owner aims to minimize the systemic cyber risk by providing sufficient incentives

to the risk manager through a dynamic contract that specifies the compensation

flows and suggested effort, while the risk manager’s objective is to maximize his

payoff with minimum effort by responding to the agreed contract. This problem

can be formulated as a differential game under incomplete information.

1.3 Background and Status Quo

1.3.1 CPS and IoT Security

Due to the increasing cyber threats, IoT security becomes a critical concern

nowadays [135]. Depending on the potential of cyber attackers, IoT networks

face heterogeneous types of attacks [108]. For example, attackers can target

the edge computing nodes in IoT, e.g., RFID readers and sensor nodes. Some

typical adversarial scenarios include the node replication attack by replicating one

node’s identification number [117], DoS by battery draining, sleep deprivation,

and outage attacks [91, 134]. The attackers can also launch attacks through the
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IoT communication networks. Quintessential examples include the eavesdropping

attack where the attacker captures the private information over the channel, and

utilizes the information to design other tailored attacks [109]. Another example is

the data injection attack where the attacker can inject fraudulent packets into IoT

communication links through insertion, manipulation, and replay techniques [144].

With the increasing adoption of information and communication technologies,

security is also a critical concern for IoT-enabled CPS [4, 98]. In [27], the authors

have used bilevel and trilevel optimization models to design secure critical infras-

tructure against terrorist attacks. A cross-layer design approach has been proposed

in [118, 148] to optimize the performance of cyber-physical control systems where

the security is modeled using a game-theoretic framework. Furthermore, [146] has

proposed a dynamic game-theoretic approach to investigate the coupling between

cyber security policy and robust control design of industrial control systems under

cascading failures. In addition, [83] and [100] have designed protective strategies

using stochastic games for energy systems under cascading failures due to attacks.

Different from the literature, in Chapter 5, we focus on security risk management

of IoT networks by capturing bounded rationality of players [45].

In addition to the system security, resilience is another crucial property that

needs to be considered by CPS network designers [127]. In [145], the authors

have proposed a hybrid framework for robust and resilient control design with

applications to power systems by considering both the unanticipated events and

deterministic uncertainties. The authors in [5] have studied the resilience aspect of

routing problem in parallel link communication networks using a two-player game

and designed stable algorithms to compute the equilibrium strategies. [55] has

studied the critical infrastructure resilience by focusing on two metrics, optimal
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repair time and resilience reduction worth, to measure the criticality of various

components in the system. The resilience of critical infrastructures, e.g., smart grid

[40, 42], has also been investigated significantly in literature. A recent book [46]

has been devoted to study the design of resilient interdependent networks.

Maximizing CPS-IoT network connectivity has been investigated vastly in

literature. Some recent advances in this field include adversarial networks design

[25, 37, 69] and strategic network formation games [10, 34, 39]. One specific

application of CPS is mobile autonomous systems (MAS). When MAS is adopted

in mission critical scenarios, such as disaster-affected areas, a higher network

connectivity provides a higher level of situational awareness [36]. Connectivity

control of mobile robotic network has been addressed in a fully centralized way

[80, 105] and completely decentralized way [126]. Our proposed model in Chapter

6 stands in between these two frameworks, and thus results in balanced features in

terms of resiliency and optimality.

1.3.2 Game-Theoretic Methods for Cybersecurity

Game-theoretic methods have been extensively used to model the cybersecurity

[74, 103, 148]. In [142], the authors have addressed the resource allocation in

defending against stealthy attacks through a game model. In addition, game

approaches have been adopted in dealing with the emerging IoT security issues,

e.g., eHealth [52] and trust in wireless sensor networks [73]. A lot of recent works

have been contributed to defending against APTs [26, 129] using game-theoretic

approaches [81, 119]. In [119], the authors have addressed the APT threats in

cyber-physical systems by proposing a multi-layer FlipIt game-based model.

Due to the interconnectivity between different agents, the security of one agent
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is also dependent on its connected ones which gives rise to the notion of “interdepen-

dent security” [94]. The authors in [41, 44, 119, 139] have further investigated the

security interdependencies in multilayer cyber-physical systems using game-theoretic

approaches. Huang et.al [82, 83] have adopted a stochastic Markov game model to

design resilient operating strategies for multilayer interdependent networks.

As the interactions between the defender and attacker evolve over time, there is

a need for a dynamic framework to model their strategic behaviors. To this end,

dynamic game approaches have been widely used to investigate the network security

and resilience. For example, [125] has used a differential game to model the malware

defense in wireless sensor networks where the system designer chooses strategies to

minimize the overall cost. A stochastic repeated game and an iterative learning

mechanism have been adopted for moving target defense in networks [150]. In [49],

a multistage Stackelberg game has been studied for developing deceptive routing

strategies for nodes in a multihop wireless communication network. Furthermore,[35]

has proposed a three-player three-stage game-theoretic framework including two

network operators and one attacker to enable the secure design of multi-layer

infrastructure networks.

1.3.3 Dynamic Games of Incomplete Information

The contract mechanism design in mitigating evolving systemic risks can be

cast as a dynamic game under nonstandard information [43]. Dynamic games

of incomplete or imperfect information have been studied within the context of

different classes of games, such as repeated games [7], differential games [30], and

stochastic games [149]. Many types of information structures that entail incomplete

or imperfect information have been investigated in the literature, such as partial or
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noisy measurements of system states [8, 16, 75, 86, 87], and asymmetric information

for the players [31, 71, 72]. Approaches to control and optimization under classical

information structures, also extended to games, include the information state based

separation principle [33, 86, 87], belief updates on players’ private information [48],

generalized belief states of agents [75], and control over networks [141]. Decision-

making under nonclassical information structures has also been studied (such as

[12, 17, 128]), where the players are coupled through the system dynamics and/or

the performance indices do not share the same information and could be memoryless.

In this dissertation, Chapter 8 focuses on dynamic risk management over networks

by investigating a class of Stackelberg-type differential games under asymmetric

information.

1.4 Contributions of the Dissertation

This dissertation establishes an interdisciplinary systems and computational

science foundation for proactive, agile, and provably-correct security and resilience

of CPS. The contributions of this dissertation span a number of spectrums, which

are summarized as follows.

1. Models and Frameworks: We propose multi-layer frameworks for inter-

dependent CPS networks, which enable the design of networks with het-

erogeneous security requirements (Chapter 3) and decentralized real-time

decision making of networked agents (Chapter 6). For a holistic study of

the infrastructure network security and resiliency, we develop a two-player

three-stage dynamic game framework (Chapter 4), capturing the strategic

interplay between defender and attacker over networks. We also propose an
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integrative framework to investigate the attentionally constrained security

management of users in the IoT networks (Chapter 5). Furthermore, we

develop innovative paradigms of security and risk management as a service

for interconnected CPS networks (Chapters 7 and 8).

2. Theoretical Advances: We provide analytical and algorithmic tools for

equilibrium analysis in both static and dynamic security games over CPS

networks, where the solutions are highly scalable (Chapters 3 and 6). We also

characterize fundamental tradeoffs in secure and resilient multi-layer network

designs. Furthermore, we advance the theoretical understanding of dynamic

mechanism design, which is a stackelberg-type differential game, for systemic

cyber risk management of CPS networks under incomplete information, and

identify new principles for dynamic principal-agent problems (Chapter 8).

3. Computationally Efficient Algorithms: We design a decentralized prox-

imal algorithm to compute the solution containing the security and attention

resources allocation of agents (Chapter 5). The algorithm discovers critical

phenomena including emergence of partisanship, filling the inattention, and

attraction of the mighty in the security risk management of IoT networks.

We also propose a resilient and decentralized iterative algorithm with prov-

able convergence to maximize the connectivity performance of dynamic and

networked autonomous systems (Chapter 6).

4. Applications: Our obtained design and operational guidelines for CPS

networks contribute a number of critical application fields, including re-

silient critical infrastructures (Chapter 4), smart and connected communities

(Chapter 5), assured autonomy (Chapter 6), secure cloud-enabled Internet
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of controlled things (Chapter 7), and interdependent enterprise networks

(Chapter 8).

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents pre-

liminaries on game theory, mechanism design, and network science. The main

component of the dissertation includes the following three parts: 1) strategic CPS

network design (Chapters 3 and 4), 2) trustworthy decision making over CPS

networks (Chapters 5 and 6), and 3) mechanism design for CPS network economics

(Chapters 7 and 8). Finally, Chapter 9 concludes the dissertation and outlines a

number of future research directions.
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Chapter 2

Background on Game Theory,

Mechanism Design, and Network

Science

In this chapter, we introduce the basics of game theory, mechanism design, and

network science, which are all important in latter chapters. To design trustworthy

CPS networks, understanding and analyzing the behaviors of adversaries is an

important step. Game theory provides a scientific and quantitative framework

to model and predict the strategic interactions between the system operator and

malicious attacker. With the massive connectivity enabled by the IoT, modern

CPS become more complex and interdependent. Hence, the operators need to

design secure strategies by considering the heterogeneity of network components,

where network science plays a critical role in facilitating the decision making over

networks. Enhancing cybersecurity of CPS networks is a challenging task. It is

possible to outsource the risk management of CPS to security professional. To this
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end, mechanism design theory becomes critical in establishing the delegated risk

management paradigm.

2.1 Introduction to Game Theory

Game theory is widely used in modeling and analyzing strategic interactions

between a number of independent agents (also called players) [61, 115]. A game G

can be generally defined by a tuple G := {N , (Ai)i∈N , (Ui)i∈N}, where N is the set

of players, Ai is the action set of player i, and Ui is the the utility function of player i.

Specifically, we consider an N -player game, where N := {1, 2, ..., N}. The decision

variable of player i ∈ N is denoted by ai ∈ Ai. Note that the action set can be

finite (infinite) such that players have a finite (infinite) number of possible actions.

For convenience, we denote the action of all N players as a := (a1, a2, ..., aN). In

addition, denote by A the Cartesian product in the form of A1 ×A2 × ...×AN .

The utility function of player i can be explicitly written as Ui(ai, a−i) : A → R,

where a−i denotes the action profile of all players except the ith one. Furthermore,

we denote by Ω ⊂ A the feasible action set of all players after capturing the possibly

coupled constraints. Thus, a feasible a needs to satisfy a ∈ Ω. We further denote

by Ωi the constrained action set of player i. A game is finite, in contrast to infinite

games (or continuous-kernel games), if both the action set and the number of

players are finite.

2.1.1 Finite Nash Games

In finite games, each player chooses actions from a finitely countable action

set, either in pure strategy or mixed-strategy sense, to maximize its utility. A
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pure strategy indicates that the player chooses a single action with certainty. In

comparison, a mixed-strategy is represented by a probability distribution over the

action set which specifies the probability of taking each action.

To characterize the strategic behaviors of players, we adopt Nash equilibrium

(NE) as the solution concept, which is defined as follows.

Definition 2.1 (Nash Equilibrium). An N-tuple action profile a∗ ∈ Ω constitutes

a Nash equilibrium (NE) of game G if, for all i ∈ N ,

Ui(a
∗
i , a
∗
−i) ≥ Ui(ai, a

∗
−i), ∀ai ∈ Ai, such that (ai, a

∗
−i) ∈ Ω. (2.1)

Since a finite N -player game may not have an NE in pure strategy, the solution

concept can be extended to mixed-strategy NE. The mixed-strategy of player i

is denoted by pi which assigns the probability of taking each action. In search

of a mixed-strategy equilibrium, Ui is replaced by its expected value taken with

respect to the mixed-strategy choices of the players, which we denote for player i

by Li(p1, ..., pN ), where Li : [0, 1]|A1| × [0, 1]|A1| × ...× [0, 1]|AN | → R. Denote Pi by

the set of all probability distributions on Ai. Then, the definition of mixed-strategy

NE is given as follows.

Definition 2.2 (Mixed-Strategy Nash Equilibrium). An N-tuple action profile

(p∗1, ..., p
∗
N) constitutes a mixed-strategy NE of game G if, for all i ∈ N ,

Li(p
∗
i , p
∗
−i) ≥ Li(pi, p

∗
−i), ∀pi ∈ Pi. (2.2)

The existence of NE in finite Nash games is presented below whose proof can

be found in [111].
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Theorem 2.1. Every finite N-player nonzero-sum game has a Nash equilibrium

in mixed-strategies.

2.1.2 Infinite Nash Games

In an N -player infinite game, the action set Ai is a finite-dimensional space

instead of a finitely countable set, ∀i ∈ N . The utility function Ui is a function on

the finite-dimensional product space A. The definition of NE strategies of infinite

games is the same as the ones in Definitions 2.1 and 2.2 with only slightly differences

on the redefined action sets.

The results of existence of NE strategy are summarized in the following Theorems

2.2 and 2.3 which can be found in [67].

Theorem 2.2. In the N-player nonzero-sum infinite game, if the constrained

action set Ωi for player i is a closed and bounded subset of a finite-dimensional

Euclidean space, and Ui(ai, a−i) is continuous for each i ∈ N , then there exists an

NE in mixed-strategies.

Theorem 2.3. In the N-player nonzero-sum infinite game, if the constrained set

Ω is a closed, bounded, and convex subset of a finite-dimensional Euclidean space,

and Ui(ai, a−i) is strictly concave in ai for each a−i and each i ∈ N , then there

exists an NE in pure strategies.

2.1.3 Stackelberg Games

The Nash equilibrium solution concept provides a noncooperative equilibrium

solution for nonzero-sum games when the roles of the players are symmetric.

However, when one of the players has the ability to enforce his strategy on the
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others, one needs to introduce a hierarchical equilibrium solution concept. Following

the terminology in [9], we call the player who dominates the game the leader, and

the others reacting to the leader’s strategy the followers. For the sake of clarity in

exposition, we focus on presenting a two-person Stackelberg games in this section,

i.e., one leader and one follower. A number of extensions of the Stackelberg solution

concept to N -person static games with different levels of hierarchy can be found in

[9].

Before presenting the solution concept for Stackelberg game, we introduce the

following definition.

Definition 2.3 (Best Response). In a two-person static game, the set BR2(a1) ⊂

Ω2 defined for each a1 ∈ Ω1 by

BR2(a1) ⊂ Ω2 = {ζ ∈ Ω2 : U2(a1, ζ) ≥ U2(a1, a2), ∀a2 ∈ Ω2} (2.3)

is the best response set of player 2 to the strategy a1 ∈ Ω1 of player 1.

Based on the best response definition, we define Stackelberg equilibrium solution

concept as follows.

Definition 2.4 (Stackelberg Equilibrium). In a two-person game with player 1 as

the leader, a strategy a∗1 ∈ Ω1 is called a Stackelberg equilibrium strategy for the

leader if

min
a2∈BR2(a∗1)

U1(a∗1, a2) = max
a1∈Ω1

min
a2∈BR2(a1)

U1(a1, a2). (2.4)

Remark: If BR2(a1) is a singleton for each a1 ∈ Ω1, i.e., the best response

function of player 2 is described completely by a reaction curve l2 : Ω1 → Ω2, then
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(2.4) can be replaced by

U1(a∗1, l2(a∗1)) = max
a1∈Ω1

U1(a1, l2(a1)). (2.5)

The existence of Stackelberg equilibrium is summarized below. More discussions

on the properties on Stackelberg equilibrium can be found in [9].

Theorem 2.4. The following statements hold:

(1) Every two-person finite game admits a Stackelberg strategy for the leader, and

the follower’s strategy is characterized by the best response.

(2) In two-person infinite games, let Ω1 and Ω2 be compact subsets, and Ui be

continuous on Ω1 × Ω2, i = 1, 2. Let there exist a finite family of continuous

mappings li : Ω1 → Ω2, with i ∈ I := {1, ...,M}, such that BR2(a1) = {a2 ∈

Ω2 : a2 = li(a1), i ∈ I}. Then, the two-person nonzero-sum infinite game

admits a Stackelberg equilibrium strategy.

2.1.4 Differential Games

The previous introduction has focused on the static game. In many cases,

players’ interactions may exist over a period of time (can be finite or infinite), which

requires a dynamic game framework. Depending on the time scale, dynamic games

are defined either in discrete time, in which case there exists a finite number of

levels of play, or in continuous time, which includes a continuum of levels of play.

That is, the players act only at discrete instants of time in a discrete-time dynamic

game, while act throughout a time interval in the continuous-time counterpart.

According to the dimension of action space of players, the dynamic games can be
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further categorized into finite and infinite ones. In this section, we will introduce

the continuous-time infinite dynamic games, or differential games in the literature.

In differential games, differential equations are used to capture the evolution

of the underlying decision process. The solutions to these functional equations,

also called state equations, determine the possible paths of actions of players. A

differential game can be formally defined as follows.

Definition 2.5 (Differential Game). An N-person differential game with a pre-

specified fixed duration involves the following components:

i) A set N of N players, where N := {1, 2, ..., N}.

ii) A time interval [0, T ] which is specified a priori, denoting the duration of the

game.

iii) An n-dimensional differential equation:

ẋ(t) = f(t, x(t), u1(t), u2(t), ..., uN(t)), x(0) = x0, (2.6)

whose solution describes the state trajectory of the game. Specifically, the state

satisfies x(t) ∈ S0, t ∈ [0, T ], where S0 is a subset of a finite-dimensional

vector space, Rn. ui(t) ∈ U i, i ∈ N , is the control/action of player i at time t,

where U i is a subset of real space of appropriate dimension, denoting player

i’s action space.

iv) Two functionals qi : S0 → R and gi : [0, T ]× S0 × U1 × ...× UN defined for

each i ∈ N . The cost function of player i in the game is defined as:

J i(u1, ..., uN) =

∫ T

0

gi(t, x(t), u1(t), u2(t), ..., uN(t))dt+ qi(x(T )). (2.7)
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v) A prespecified class Γi of mapping γi such that ui(t) = γi(t, x), where Γi is the

strategy space of player i, and each of its element γi is a permissible strategy

for player i, i ∈ N .

To determine the strategies of players in the differential game, another important

factor to know beforehand is the player’s knowledge of the game. Denote by ηi(t)

the state information gained and recalled by player i at time t ∈ [0, T ]. Then,

ηi(·) characterizes the information structure of player i, and the collection of these

information structures specifies the information structure of the game. We next

present a number of information structures within the context of deterministic

differential games.

Definition 2.6. In an N-person differential game with a fixed duration [0, T ], we

call that player i’s information structure is

i) open-loop if ηi(t) = {x0}, t ∈ {0, T},

ii) closed-loop perfect state if ηi(t) = {xs, 0 ≤ s ≤ t}, t ∈ {0, T},

iii) ε-delayed closed-loop perfect state if ηi(t) =


{x0}, 0 ≤ t ≤ ε

{xs, 0 ≤ s ≤ t− ε}, ε < t

,

t ∈ {0, T} where ε > 0 is fixed.

iv) memoryless perfect state if ηi(t) = {x0, x(t)}, t ∈ {0, T},

iv) feedback (perfect state) if ηi(t) = {x(t)}, t ∈ {0, T}.

To ensure the existence of a unique state trajectory under players’ control

and hence a well-defined differential game problem, we require conditions in the

following theorem.
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Theorem 2.5. Under the conditions that

i) f(t, x(t), u1(t), u2(t), ..., uN(t)) is continuous in t ∈ [0, T ] for each x,

ii) f(t, x(t), u1(t), u2(t), ..., uN(t)) is uniformly Lipschitz in x, u1, ..., uN ,

iii) For γi ∈ Γi, γi(t, x) is continuous in t for each x and and uniformly Lipschitz

in x,

the differential equation (2.6) admits a unique solution for every γi ∈ Γi, such that

ui(t) = γi(t, x). In addition, the unique state trajectory is continuous.

In the following, we present two classes of differential games, including zero-sum

differential games and N -person nonzero-sum differential games.

We assume that f(t, ·, u1(t), u2(t), ..., uN(t)), gi(t, ·, u1(t), u2(t), ..., uN(t)), and

qi(·) are continuously differentiable, ∀t ∈ [0, T ].

2.1.4.1 Zero-Sum Differential Games

There are two players, player 1 and player 2, with their control denoted by u

and v, respectively. The state equation can be written as

ẋ(t) = f(t, x(t), u(t), v(t)), x(0) = x0. (2.8)

For notational simplicity and without loss of generality, we assume all variables

to be one-dimensional. Denote by U and V by the feasible action spaces of two

players. Further, consider objective function

J(u, v) =

∫ T

0

g(t, x(t), u(t), v(t))dt+ q(x(T )). (2.9)
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In the game, player 1 aims to maximize (2.9), while player 2 seeks to minimize

(2.9). Our goal is to find admissible control trajectories satisfying

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v). (2.10)

Note that u∗ and v∗ are called minimax solution. The necessary condition for

u∗ and v∗ satisfying (2.10) can be obtained using Pontryagin maximum principle

[93], a well-known result in optimal control theory. Specifically, we can form a

Hamiltonian function

H(t, x(t), u(t), v(t), λ(t)) = g(t, x(t), u(t), v(t)) + λ(t)f(t, x(t), u(t), v(t)), (2.11)

where λ ∈ R is the adjoint variable satisfying constraints

λ̇(t) = −Hx(t, x(t), u(t), v(t), λ(t)),

λ(T ) = qx(x(T )).

Here, Hx and qx stand for the partial derivative with respect to the state variable.

Denote by x∗(t), 0 ≤ t ≤ T , the state trajectory under the minimax control solution.

To this end, the necessary condition for (2.10) being hold can be written as follows:

H(t, x∗(t), u∗(t), v∗(t), λ(t)) = min
v∈V

max
u∈U

H(t, x∗(t), u, v, λ(t)). (2.12)

Under the scenarios that the action spaces for both players are unconstrained, the

necessary conditions can be simplified to: (i) the first-order conditions Hu = 0 and

Hv = 0, and (ii) the second-order conditions Huu ≤ 0 and Hvv ≥ 0.
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2.1.4.2 N-Person Differential Games

We next consider an N -person differential game. Each player i is a minimizer

with the cost function given by (2.7). The solution concept to this game is Nash

equilibrium. Similar to the solution in N -person finite Nash games, the Nash

equilibrium of the N -person differential game satisfies, ∀i ∈ N ,

J i(ui∗, u−i∗) ≤ J i(ui, u
−i∗),∀ui ∈ U i, (2.13)

with notation u−i representing the strategy profile including all players except the

ith one.

Depending on the information structure of the game, the Nash solutions take

various forms. We will present the results of two types of the ones listed in Definition

2.6: open-loop and feedback strategies.

Theorem 2.6. If {γi∗(t, x0) = ui∗(t), i ∈ N} provides an open-loop Nash equilib-

rium solution to the formulated N -person differential game with the corresponding

state trajectory x∗(t), 0 ≤ t ≤ T , then the following relationships are satisfied:

ẋ∗(t) = f(t, x∗(t), u1∗(t), u2∗(t), ..., uN∗(t)), x∗(0) = x0,

γi∗(t, x0) = ui∗(t) = arg min
ui∈U i

H i(t, x∗, ui, u−i∗, λi),

λ̇i(t) = −H i
x(t, x

∗, u1∗, ..., uN∗),

λ̇i(T ) = qix(x
∗(T )), i ∈ N ,

where H i(t, x, u1, ..., uN , λi) := gi(t, x, u1, ..., uN ) + λi(t)f(t, x, u1, ..., uN ), t ∈ [0, T ]

is the Hamiltonian function, and λi(t) is the costate function, i ∈ N .
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The feedback Nash solution is based on the current state of the game, i.e.,

ui(t) = γi(x(t), t), i ∈ N , for some function γi to be determined. We then have the

following result.

Theorem 2.7. For an N -person differential game of prescribed fixed duration [0, T ],

and under either memoryless perfect state or closed-loop perfect state information

structure, the strategy profile {γi∗ ∈ Γi, i ∈ N} provides a feedback Nash equilibrium

solution if there exist functions V i : [0, T ]× Rn → R, i ∈ N , satisfying the partial

differential equations

−∂V
i(t, x)

∂t
= min

ui∈U i

(
∂V i(t, x)

∂x
f̃ i∗(t, x, ui) + g̃(t, x, ui)

)
=
∂V i(t, x)

∂x
f̃ i∗(t, x, γi∗(t, x)) + g̃(t, x, γi∗(t, x)),

V i(t, x) = qi(x), i ∈ N , (2.14)

where f̃ i∗(t, x, ui) := f(t, x, {γ∗−i(t, x), ui}), g̃i∗(t, x, ui) := g(t, x, {γ∗−i(t, x), ui}),

and {γ∗−i(t, x), ui} := γ1∗(t, x), ..., γi−1∗(t, x), ui, γi+1∗(t, x), ..., γN∗(t, x).

It is also possible to obtain the closed-form solutions to a number of special

classes of differential games, such as N -person affine-quadratic differential games

defined as follows.

Definition 2.7. An N-person differential game of fixed prescribed duration is
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affine-quadratic if the functionals in (2.6) and (2.7) admit the following forms:

f(t, x, u1, ..., uN) = A(t)x+
∑
i∈N

Bi(t)ui + c(t),

gi(t, x, u1, ..., uN) =
1

2

(
xTQi(t)x+

∑
j∈N

ujTRij(t)uj

)
,

qi(x) =
1

2
xTQi

fx,

where ‘T’ denotes the matrix transpose operator; A(·), Bi(·), Qi(·), Rij(·) are

matrices of appropriate dimensions; c(·) is an n-dimensional vector. All are defined

on [0, T ], and with continuous entries. In addition, Qi
f , Qi(·) are symmetric, and

Rii(·) is positive definite, i ∈ N . Note that an affine-quadratic game becomes a

linear-quadratic one when c = 0.

The following result characterizes the analytical solution of feedback Nash

equilibrium strategies in an N -person affine-quadratic differential game.

Corollary 2.1. In an N-person affine-quadratic differential game with Qi(·) ≥ 0,

Qi
f (·) ≥ 0, Rij(·) ≥ 0, where i, j ∈ N and i 6= j, let there exist a set of matrix valued

functions Zi(·) ≥ 0, i ∈ N , satisfying the following N coupled Riccati differential

equations:

Żi + ZiF̃ + F̃TZi +
∑
j∈N

ZjBjRjj−1
RijRjj−1

BjTZj +Qi = 0, (2.15)

Zi(T ) = Qi
f , (2.16)

where F̃ (t) := A(t)−
∑

i∈N B
i(t)Rii(t)−1Bi(t)TZi(t). Then, under either memory-

less perfect state or closed-loop perfect state information structure, the differential
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game admits a feedback Nash equilibrium solution in the following form:

γi∗(t, x) = −Rii(t)−1Bi(t)T[Zi(t)x(t) + ζ i], i ∈ N , (2.17)

where ζi, i ∈ N , are the unique solution of the following coupled linear differential

equations:

ζ i + F̃Tζ i +
∑
j∈N

ZjBjRjj−1
RijRjj−1

BjTζj + Ziβ = 0, ζ i(T ) = 0, (2.18)

with β := c −
∑

i∈N B
iRii−1

BiTζ i. Furthermore, the corresponding values of the

cost functionals are

J i∗ = V i(0, x0) =
1

2
xT0Z

i(0)x0 + xT0 ζ
i(0) + ni(0), (2.19)

where ni(·), i ∈ N , are obtained from

ni + βTζ i +
∑
j∈N

ζjBjRjj−1
RijRjj−1

BjTζj = 0, ni(T ) = 0. (2.20)

There are other types of differential games, e.g., Stackleberg differential games.

The readers interested in a more complete introduction of this type of differential

games can refer to [9] (Chapter 7) for more details.

2.2 Introduction to Mechanism Design

To goal of mechanism design is to devise implementable and efficient solutions

to the a non-cooperative game that involves multiple players, and each has private
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information on their preferences. There are many problems in practice that can

be described as a mechanism design problem, where the decision maker faces

a scenario in which its payoff-related information is held privately by another

agent. Mechanism design theory can also be seen as a sub-field of game theory.

Due to agent’s private information, mechanism designer needs to solve a game

under incomplete information. In these games, if the designed mechanism is not

efficient, the agents then can take advantage of their private information (e.g., lying

about their preferences) to receive a higher payoff. For the purpose of promoting

truth-revelation from agents, it is crucial for the mechanism designer to provide

appropriate incentives and hence efficient mechanisms to achieve the desirable

outcome of the game.

There is a vast literature on different types of mechanism design problems. Here,

we focus on a quintessential class of problems called contract mechanisms, which

have been widely used in real-world applications, such as CPS security [38], cyber

risk management [47], power systems [54], mobile crowdsourcing [143], and supply

chain [65].

2.2.1 Contract Theory

Contract theory has a very rich history. Its study started in 1960s and since

then, it has received a significant amount of attention from economists and game

theorists. Contract theory has also been widely applied to real-world economic

problems, and its importance has been well recognized, including the Nobel Prize in

Economic Sciences, which was awarded to Oliver Hart and Bengt Holmström jointly

for their contributions to contract theory in 2016. Furthermore, contract theory is

very related to mechanism design whose importance is also widely acknowledged;
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e.g., Leonid Hurwicz, Eric Maskin and Roger Myerson were awarded the 2007 Nobel

Prize in Economics for their contributions to mechanism design theory.

A major force that facilitates the development of contract theory is the failure

of general equilibrium theory when the economic problem includes asymmetric

information between players. For example, customers know more about their

preferences than the service providers; service providers know more about their

costs than the government; and all agents’ actions taken can be partially observable.

In the seller/buyer example, the information asymmetry refers to the fact that the

seller does not have perfect knowledge about the characteristics of the buyer. Tools

from contract theory can be leveraged to combat this information asymmetry from

the seller’s perspective, where he can offer appropriate incentives to the buyer by

providing an efficient pricing scheme in the contract.

Another classical application scenario of contract theory lies in labor/organi-

zational economics, in which the employer needs to design a reward mechanism

for the work that the employee has done, despite the fact that employee’s effort is

hidden to the employer. The employer’s goal is to maximize his payoff function

by designing a menu of contracts for employee based on some publicly observable

signals, e.g., work outcomes. This mechanism design problem can be formulated

as an constrained optimization program; i.e., the employer maximizes his chosen

objective function while considering the employee’s incentives. Specifically, there are

two major types of constraints that the employee needs to take into account. One

is incentive compatibility constraint capturing the rational behavior of employee in

maximizing his own payoff when selecting the contract. The other one is individual

rationality constraint indicating that under the chosen contract, the employee’s

benefit should be no less than his reservation payoff.
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The models in contract theory can be categorized into several classes of problems

based on whether they are static or dynamic, whether they capture a bilateral or

multilateral relationships, whether the contractual terms are one-dimensional or

multi-dimensional, etc. Furthermore, these models generally fall into a principal-

agent paradigm that involves two parties: an informed party and an uninformed

party, which we will describe in detail below.

2.2.2 Principal-Agent Models

In the principal-agent models, one party has the bargaining power by proposing

a contract, and the other party can choose to either accept it or not but is not free

to propose another contract. The principal-agent problem thus can be regarded as

a Stackelberg-type game in which the principal who proposes the contract is the

leader and the agent who chooses to accept or reject is the follower.

The principal-agent models can be categorized according to whether the initiative

in contract design belongs to the uninformed party or the informed one. We next

discuss two major types of them, namely adverse selection and moral hazard.

2.2.2.1 Adverse Selection

In adverse selection framework, some characteristics of the agent are imperfectly

observed by the principal. For example, in labor market, the employer may not

know the level of competence of the employees. Depending on which party designs

the contract, the adverse selection problems can be further classified into two

classes: screening and signaling. In the screening problem, the contract mechanism

is offered by the uninformed party. In contrast, the informed party devises the

contract in the signaling problem.
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To give a more concrete idea on the features of the adverse selection, we leverage

the employer/employee as an running example. In the screening problems, the

employer/uninformed party, acting as the principal, designs the contract in a

manner to screen the private information owned by the employee/agent. The

principal can achieve his goal by offering a menu of contracts, in which each item

includes a required outcome/performance from the agent and a corresponding

reward for agent’s effort. In this game, different types of informed agents can

choose according to their private characteristics. In the signaling problems, the

informed party acts first by sending a signal that may reveal information related

to its type. In the example, the employee becomes the principal and designs the

contract. The contracted terms can include an action taken by the employee and

an associated reward required from the employer. The computational complexity

of optimal contract mechanisms can be remarkably reduced by only focusing on

the incentive compatible and direct revelation mechanisms thanks to the revelation

principle [110].

We next present a mathematical formulation where the agents have private

information about their types, and thus can be called hidden-type problems. Let

us consider N types of agents in the problem, where the type parameter is denoted

by θi, i ∈ N : {1, 2, .., N}. In the employer/employee example, the type can be

employee’s ability and competence level. The principal does not know the type

information of agents explicitly. Instead, he only knows that an agent is of type θi

with probability σi ≥ 0, where
∑

i∈N σi = 1.

The contract designed by the principal for agents of type θi includes two terms:

required agent’s outcome qi and reward ri. The objective function of the principal
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then can be written as

Up =
∑
i∈N

σi(qi − ri). (2.21)

We next define by v(θi, ri) the valuation of agents of type θi in receiving ri

reward. Then, the objective function of type θi agents is

U i
a = v(θi, ri)− qi. (2.22)

There are two types of constraints to consider in the contract design: incentive

compatibility (IC) and individual rationality (IR). The IC ensures that the agents

receive the highest payoff when selecting the contract designed specifically for their

own types. The IR guarantees the participation of all types agents by ensuring a

nonnegative utility.

Definition 2.8 (Incentive Compatibility). The designed contract should be incentive-

compatible; i.e., the following constrains need to be satisfied:

v(θi, ri)− qi ≥ v(θi, rj)− qj, ∀i, j ∈ N , i 6= j. (2.23)

Definition 2.9 (Individual Rationality). The designed contract should satisfy the

following individual rationality constrains:

v(θi, ri)− qi ≥ 0, ∀i ∈ N . (2.24)

The principal’s goal is to maximize his utility Up by designing contracts satisfying

the above incentive constraints. To this end, the principal’s problem can be

formulated as follows:
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max
qi,ri,i∈N

∑
i∈N

σi(qi − ri)

s.t. IC (2.23), IR (2.24). (2.25)

Note that there are |N |2 number of constraints in (2.25). Therefore, with more

types of agents considered, the complexity in solving (2.25) will grow quadratically.

Depending on the structure of agent’s valuation functional v, (2.25) could be

simplified further by reducing the number of IC and IR constraints.

2.2.2.2 Moral Hazard

Another principal-agent model in parallel with the adverse selection is called

moral hazard. The unique feature of this type of mechanism design problems is that

the agent’s actions are hidden to the principal. Furthermore, in moral hazard, the

principal (uninformed party) acts first and is imperfectly informed of the actions

taken by the agent (informed party). To deal with this kind information asymmetry,

the principal invokes the revelation principle, and designs a menu of contracts

specifying the action-reward pairs.

We consider a discrete version formulation of moral hazard in which the agent

can choose between N possible actions: {ai, ∀i ∈ N}. Each action can lead to

one among M outcomes: {xi, ∀i ∈ N}, where M := {1, 2, ...,M}. The principal

cannot differentiate the agents solely based on the observed outcome. Instead, the

principal only has ‘vague’ information. That is, when agent chooses action ai, the

principal observes outcome xj with probability pij ≥ 0, satisfying
∑

j∈M pij = 1,

∀i ∈ N . To design an efficient contract, the principal should design the incentive
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scheme that is based on the observable outcome. To this end, we denote by rj the

reward/payment that the principal delivers to the agent when he observes outcome

xj.

Therefore, the agent’s utility, denoted by U i
a, under action ai and induced

outcome xj can be in the following form:

U i
a = u(rj)− ai, (2.26)

where u : R+ → R+ is the agent’s valuation on the reward. When the principal

aims to improve the the welfare of the agents, his utility by observing outcome xj

can take the form of xj − ri.

Under a given menu of contracts {ri, ∀i ∈ N}, the agent determines his action

by solving the following optimization program:

max
ai, i∈N

M∑
j=1

piju(rj)− ai.

When the agent prefers ai, then the following inequalities characterize the IC

constraints:

M∑
j=1

piju(rj)− ai ≥
M∑
j=1

psju(rj)− as, ∀s ∈ N , s 6= i. (2.27)

We can also write the IR constraints, if the agent prefers action ai, as

M∑
j=1

piju(rj)− ai ≥ 0, ∀i ∈ N . (2.28)
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In moral hazard, the principal solves the following optimization problem:

max
wj ,j∈N , i

M∑
j=1

pij(xj − rj)

s.t. IC (2.27), IR (2.28). (2.29)

The obtained ai from 2.29 is the action chosen at the optimum, yielding the largest

payoff to the principal. Though not directly controllable, the principal can affect

the the actions of agents through the reward design in the contracts.

The readers interested in a comprehensive intruduction of contract theory and

mechanism design can refer to [24, 96].

2.3 Introduction to Network Science

2.3.1 Modeling of Networks

An undirected graph G is defined by a pair of sets (V,E), where V is a non-empty

countable set of elements, called nodes or vertices, and E is a set of unordered

pairs of different nodes, called edges or links. The link (i, j) joins nodes i and j.

The total number of nodes in the graph is equal to the cardinality of the set V

denoted by |V | which is also referred as the size of the graph G. The cardinality of

the set E is equal to the number of edges. Note that in a graph with n nodes, the

maximum number of links is equal to n(n−1)
2

. When all pairs of nodes are connected,

then G is called a complete graph.

Suppose that G(V,E) consists of n nodes and interconnected by m links. Adja-

cency matrix is usually used to represent an undirected graph G(V,E). Denote the

adjacency matrix of G by A ∈ Rn×n. The element of A is denoted by aij taking
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values as follows:

aij =


wij, nodes i and j are connected;

0, nodes i and j are not connected;

(2.30)

where wij ∈ R+ is the link weight. If G is an unweighted graph where links are

homogeneous, then wij = 1 if link (i, j) ∈ E, and otherwise wij = 0. When G is a

weighted graph where each link (i, j) is associated with a weight wij representing the

intensity of its connection, then the entry in A becomes aij = wij if link (i, j) ∈ E,

and otherwise aij = 0.

There are a number of metrics to quantify the performance of graph for different

purposes, including the node degree, nearest neighbors, reachability, shortest path,

and diameter. We focus on a metric called algebraic connectivity [57] which is an

indicator of how well a graph is connected. Algebraic connectivity is based on

the Laplacian matrix of a graph. Consider a graph consists of n nodes and m

links. For a link l that connects nodes i and j where the link weight equaling to

wij, we define two n-dimensional vectors al and bl, where al(i) = 1, al(j) = −1,

bl(i) = wij, bl(j) = −wij, and all other entries 0. When G is unweighted, wij = 1.

Then, the Laplacian matrix L of network G can be expressed as

L =
m∑
l=1

alb
T
l . (2.31)

Intuitively, the ith diagonal entry Lii in the Laplacian matrix is equal to the

degree of node i, i.e., Lii =
∑

j∈Ni wij, ∀i ∈ V , where Ni denotes the set of nodes

that connects with node i. In addition, Lij = −wij, ∀i 6= j ∈ V, if nodes i and

j are connected; otherwise Lij = 0. Additionally, Laplacian matrix is positive
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semidefinite, and L1 = 0, where 1 is an n-dimensional vector with all one entries.

Thus, by arranging the eigenvalues of L in an increasing order, we obtain

0 = λ1 ≤ λ2 ≤ ... ≤ λn, (2.32)

where the smallest eigenvalue λ1(L) = 0, and λ2(L) is called algebraic connectivity

(or Fiedler value) of G [57]. Further, λ2(L) = 0 when G is not connected. For a

graph with Laplacian L, the algebraic connectivity λ2(L) can be computed from

the Courant-Fisher theorem [79] as follows:

λ2(L) = min{zTLz|z ∈ 1⊥, ||z||2 = 1}, (2.33)

where || · ||2 denotes the standard L2 norm.

The readers interested in more detailed and formal discussions on graph theory

can refer to [22, 136].

2.3.2 Modeling of Network-of-Networks

To facilitate the analysis and design of resilient interdependent networks, we

need to establish a model for network-of-networks. We consider two interdependent

networks G1(V1, E1) and G2(V2, E2), where networks 1 and 2 are represented by the

graphs Gi, i = 1, 2, respectively. Network i, for i ∈ {1, 2}, is composed of ni = |Vi|

nodes and mi = |Ei| links. The set of links denoted by Ei are called the inter-links

of individual network i. The two networks can also be connected using intra-links

which create the interdependencies between two networks. Let E12 be the set of

m12 intra-links between G1 and G2, with m12 = |E12|. Hence, the global network
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can be represented by the combined graph G = (V1∪V2, E1∪E2∪E12). Note that

we also use E21 to denote the set of intra-links in G for convenience later, and

thus E21 = E12. Let n = n1 + n2 and m = m1 +m2 +m12. The adjacency matrix

A ∈ Rn×n of the global networks G has the entry aij defined in (2.30).

Let A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 be the adjacency matrices of G1 and G2.

When these two networks are disconnected, A takes the following form

A =

 A1 0n1×n2

0n2×n1 A2

 ,
where 0n1×n2 is an n1× n2-dimensional matrix with all zero entries. When E12 6= ∅,

the adjacency matrix of the network G becomes

A =

A1 B12

BT
12 A2

 ,
where B12 ∈ Rn1×n2 is an off-diagonal block matrix used to capture the effect of

intra-links between networks.

The Laplacian matrix L can be rewritten as adjacent matrices A1 and A2. Let

D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 be two diagonal matrices associated with network 1

and 2, respectively, which are defined as follows:


(D1)ii =

∑
j

(B12)ij,

(D2)ii =
∑
j

(BT
12)ij.
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Then, by using L = D−A, the Laplacian matrix of G is

L =

L1 + D1 −B12

−BT
12 L2 + D2

 , (2.34)

where Li = Di−Ai, i = 1, 2, are Laplacians associated with G1 and G2, respectively.

Note that depending on the modeling and decomposition of network-of-networks,

the above two-layer network model can be directly extended to multi-layer ones. The

off-diagonal blocks in the adjacency matrix capture the complex interdependencies

between all those connected layers.
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Part II

Strategic CPS Network Design
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Chapter 3

Optimal Secure Multi-Layer

CPS-IoT Network Design

3.1 Introduction

Internet of Things (IoTs) networks can be viewed as multi-layer networks with

the existing infrastructure networks (e.g., cloud and cellular networks) and the

underlaid device networks, and hence with cyber-physical features. In this chapter,

we focus on a two-layer IoT network and aim to design each network resistant to

different number of link failures with minimum resources. We characterize the

optimal strategy of the secure network design problem by first developing a lower

bound on the number of links a secure network requires for a given budget of

protected links. Then, we provide necessary and sufficient conditions under which

the bounds are achieved and present a method to construct an optimal network that

satisfies the heterogeneous network design specifications with the minimum cost.

Furthermore, we characterize the robust network topologies which optimally satisfy
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a class of security requirements. These robust optimal networks are applicable to

the cases when the cyber threats are not perfectly perceived or change dynamically,

typically happening in the mission-critical scenarios when the attacker’s action is

partially observable.

The proposed framework can be applied to many mission-critical scenarios.

In the case studies, we consider a battlefield scenario in which the UAV network

collaborates with the soldier network to execute tasks. We investigate how the

optimal network changes as the cost of forming a protected communication link

varies. We also study the dynamic reconfiguration and resilience of the UAV

network as nodes leave and join the battlefield.

3.2 Heterogeneous Two-Layer IoT Network

Design Formulation

In this section, we formulate a two-layer secure IoT network design problem.

Due to the heterogeneous features of IoT networks, the devices at each layer face

different levels of cyber threats. To maintain the global situational awareness,

the designer aims to devise an IoT network with a minimum cost, where each

layer of IoT network should remain connected in the presence of a certain level of

adversarial attacks.

Specifically, we model the two-layer IoT network with two sets of devices or

nodes1 denoted by S1 and S2. Each set of nodes is of a different type. Specifically,

denote by n1 := |S1| and n2 := |S2| the number of nodes of type 1 and 2, respectively,

1Nodes and vertices in the IoT network refer to the devices, and they are used interchangeably.
Similar for the terms edges and links.
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where | · | denotes the cardinality of a set. We unify them to n = n1 + n2

vertices that are numbered from 1 to n starting from nodes in S1. Thus, a node

labeled i is of type 1 if and only if i ≤ n1. Note that each set of nodes forms an

IoT subnetwork. Together with the interconnections between two sets of nodes,

the subnetworks form a two-layer IoT network. Technically, the communication

protocols between nodes within and across different layers can be either the same

or heterogeneous depending on the adopted technology by considering the physical

distance constraints. Furthermore, the nodes’ functionality can be different in two

subnetworks depending on their specific tasks. In this chapter, our focus lies in the

high-level of network connectivity maintenance.

In standard graph theory, an edge (or a link) is an unordered pair of ver-

tices: (i, j) ∈ J1, nK2, i 6= j, where J1, nK2 is a set including all the pairs of

integers between 1 and n. We recall that two vertices (nodes) i0 and iL are

said connected in a graph of nodes S1 ∪ S2 and a set of edges E if there exists a

path between them, i.e., a finite alternating sequence of nodes and distinct links:

i0, (i0, i1), i1, (i1, i2), i2, ..., (iL−1, iL), iL, where il ∈ S1 ∪ S2 and (il−1, il) ∈ E for

all 1 ≤ l ≤ L.

In our IoT networks, the communication links (edges) are vulnerable to malicious

attacks, e.g., jamming and DoS, which result in link removals. To keep the IoT

network resistant to cyber attacks, the network designer can either invest (i) in

redundancy of the path, i.e., using extra links so that two nodes can communicate

through different paths, or (ii) in securing its links against failures where we refer

to these special communication edges as protected links. These protected links

can be typically designed using moving target defense (MTD) strategies, where

the designer randomizes the usage of communication links among multiple created
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channels between two nodes [147]. More precisely, we consider that for the designer,

the cost per non-protected link created is cNP and the cost per protected link

created is cP . It is natural to have cNP ≤ cP since creation of a protected link is

more costly than that of a non-protected one. For clarity, we assume that the costs

of protected or non-protected links at two different layers are the same. If the costs

of creating links are different in two subnetworks, then the network designer needs

to capture this link creation difference in his objective. Let ENP ⊆ E be the set of

non-protected links and EP ⊆ E be the set of protected links in the IoT network,

and ENP ∪ EP = E . In this chapter, we assume that the protection is perfect, i.e.,

links will not fail under attacks if they are protected. Therefore, an adversary

does not have an incentive to attack protected links. Denote the strategy of the

attacker by EA, then it is sufficient to consider attacks on a set of links EA ⊆ ENP .

Furthermore, we assume that the network designer can allocate links between any

nodes in the network. In the scenarios that setting up communication links between

some nodes is not possible, then the network designer needs to take into account

this factor as constraints when designing networks.

The heterogeneous features of IoT networks naturally lead to various security

requirements for devices in each subnetwork. Hence, we further consider that the

nodes in IoT network have different criticality levels (k1 and k2 for nodes of type 1

and 2, respectively, with k1, k2 ∈ J0, |ENP |K, where Ja, bK denotes a set of integers

between a and b). It means that subnetworks 1 and 2 should remain connected

after the compromise of any k1 and k2 links in ENP , respectively. Thus, the designer

needs to prepare for the worst case of link removal attacks when designing the

two-layer IoT network. Our problem is beyond the robust network design where

the link communication breakdown is generally caused by nature failures. In this
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chapter, we consider the link removal which is a consequence of cyber attacks, e.g.,

jamming and DoS attack. Furthermore, in our problem formulation, the network

designer can allocate protected links which can be seen as a security practice, and

he takes into account the strategic behavior of attackers, and designs the optimal

secure networks. Without loss of generality, we have the following two assumptions:

(A1) k1 ≤ k2.

(A2) n1 ≥ 1, n2 ≥ 1.

Specifically, (A1) indicates that the IoT devices in subnetwork 2 are relatively

more important than those in subnetwork 1, and thus subnetwork 2 should be

more resistant to cyber attacks. Another interpretation of (A1) can also be that

subnetwork 2 faces a higher level of cyber threats, and the network designer needs

to prepare a higher security level for subnetwork 2. In addition, (A2) ensures that

no IoT subnetwork is empty.

More precisely, consider a set of vertices S1 ∪ S2 and edges EP ∪ ENP . The IoT

network designer needs to guarantee the following two cases:

(a) if |EA| ≤ k1, then all nodes remain attainable in the presence of attacks,

i.e., ∀i, j ∈ S1 ∪ S2, there exists a path in the graph (S1 ∪ S2, EP ∪ ENP\EA)

between i and j.

(b) if |EA| ≤ k2, nodes of type 2 remain attainable after attacks, i.e., ∀i, j ∈ S2,

there exists a path in the graph (S1 ∪ S2, EP ∪ ENP\EA) between i and j.

Remark: We denote the designed network satisfying (a) and (b) above by

sD := (S1∪S2, EP∪ENP ), and call such heterogeneous IoT networks (k1, k2)-resistant

(with k1 ≤ k2). The proposed (k1, k2)-resistant metric provides a flexible network
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design guideline by specifying various security requirements on different network

components. Furthermore, in this chapter, we care about each node’s degree which

requires an explicit agent-level quantification. Then, the (k1, k2)-resistant metric is

more preferable than measure of the proportion of links in each subnetwork, where

the latter metric only gives a macroscopic description of the link allocation over

two subnetworks.

Given the system’s parameters S1, S2, k1, and k2, an optimal strategy for the

IoT network designer is the choice of a set of links EP ∪ ENP which solves the

optimization problem:

min
EP ,ENP

cp|EP |+ cNP |ENP |

s.t. EP ⊆ J1, nK2, ENP ⊆ J1, nK2,

EP ∩ ENP = ∅,

sD = (S1 ∪ S2, EP ∪ ENP ) is (k1, k2)−resistant.

From the above optimization problem, the optimal network design cost directly

depends on cP and cNP . In addition, as we will analyze in Section 3.3, the cost

ratio cP
cNP

plays a critical role in the optimal strategy design.

Under the optimal design strategy, compromising a node with low degree, i.e.,

k1 degree in subnetwork 1 and k2 degree in subnetwork 2, is not feasible for the

attacker, since the degree of any nodes without protected link in the network is

larger than k1 or k2 depending on the nodes’ layers.

Note that the above designer’s constrained optimization problem is not straight-

forward to solve. First, the size of search space increases exponentially as the

number of nodes in the IoT network grows. Therefore, we need to find a scalable
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method to address the optimal network design. Second, the heterogeneous security

requirements make the problem more difficult to solve. On the one hand, two

subnetworks are separate since they have their own design standards. On the other

hand, we should tackle these two layers of network design in a holistic fashion due

to their natural couplings.

Lower bound on the number of non-protected links

p
0 n2 − 2

n1(k1+1)+n2(k2+1)
2

A

Bn1(k1+1)+2(k2+1)
2

n2 − 1

C(n1+1)(k1+1)
2

n1 + n2 − 2

D

E

k1 + 1

n1 + n2 − 1

Slope k2+1
2

Slope (k2+1)+(k2−k1)
2

Slope k1+1
2

Slope k1 + 1

Figure 3.1: Lower bound on the number of non-protected links as a function on
the number of protected links in the IoT network. Note that all the slopes of lines
are quantified in their absolute value sense for convenience.

3.3 Analytical Results and Optimal IoT Network

Design

In this section, we provide an analytical study of the designer’s optimal strategy,

i.e., the optimal two-layer IoT network design.

We first develop, for given system parameters S1, S2, k1, k2, cP and cNP , and

for each possible number of protected links p = |EP |, a lower bound on the number
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of non-protected links that have any (k1, k2)-resistant network with p protected

links (Section 3.3.1). Then, we study three important cases, namely when p takes

values 0, n2 − 1 and n1 + n2 − 1, and present for each of them sufficient conditions

under which the lower bounds are attained (Section 3.3.2). Based on this study, we

can obtain the main theoretical results of this chapter, which include the optimal

strategy for the designer, i.e., a (k1, k2)-resistant IoT network with the minimal

cost, as well as the robust optimal strategy, and constructive methods of an optimal

IoT network (Section 3.3.3).

3.3.1 A Lower Bound on the Number of (Non-Protected)

Links

Recall that the system parameters are S1, S2, k1, k2, cP and cNP (corresponding

to the set of nodes of criticality level 1 and 2, the values of criticality, and the

unitary cost of creating protected and non-protected links). We first address the

question of a lower bound on the cost for the designer with an additional constraint

on the number of protected links p in the network. Since the cost is linear with the

number of non-protected links, it amounts to finding a lower bound on the number

of non-protected links that are required in any (k1, k2)-resistant network with p

protected links.

Let s̃Dp be a (k1, k2)-resistant network containing p protected links. Then, we

have the following proposition on the lower bound |ENP |.

Proposition 3.1 (Lower bound on |ENP |). The number of non-protected links of

s̃Dp is at least of

(i)
n1(k1 + 1) + (n2 − p)(k2 + 1)

2
, if 0 ≤ p ≤ n2 − 2,
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(ii)
(n− p)(k1 + 1)

2
, if n2 − 1 ≤ p ≤ n1 + n2 − 2,

(iii) 0, if p = n1 + n2 − 1.

Note that p takes integer values in each regime. The results are further illustrated

in Fig. 3.1.

Before proving Proposition 3.1, we first present the notion of network contraction

in the following.

Network Contraction: Let g = (S1 ∪ S2, EP ∪ ENP ) be a network. Given a

link (i, j) ∈ EP , the network denoted by g � (i, j) refers to the one obtained by

contracting the link (i, j); i.e., by merging the two nodes i and j into a single node

{i, j} (supernode). Note that any node a is adjacent to the (new) node {i, j} in

g � (i, j) if and only if a is adjacent to i or j in the original network g. In other

words, all links, other than those incident to neither i nor j, are links of g � (i, j)

if and only if they are links of g. Then ĝ, the contraction of network g, is the

(uniquely defined) network obtained from g by sequences of link contractions for

all links in EP [25].

For clarity, we illustrate the contraction of a network g in Fig. 3.2. This example

consists of 5 nodes and 2 protected links (represented in bold lines between nodes

1 and 2 and between nodes 3 and 4). The link (1, 2) is contracted and thus both

nodes 1 and 2 in g are merged into a single node denoted by {1, 2} in ĝ. Similarly

the link (3, 4) is contracted. The resulting network thus consists of node 5 and

supernodes {1, 2} and {3, 4}. Since g contains a link between nodes 5 and 1 in g,

then nodes 5 and {1, 2} are connected through a link in network ĝ. Similarly, since

nodes 1 and 3 are adjacent in g, then supernodes {1, 2} and {3, 4} are adjacent in

network ĝ.
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5

1 2

3 4

(a) Network g = (N, EP ∪
ENP )

5

{1, 2}

{3, 4}
(b) Contraction net-
work ĝ

Figure 3.2: Illustration of network contraction. The protected links (1, 2) and (3, 4)
in network g are contracted in network ĝ.

Based on network contraction, we present the proof of Proposition 3.1 as follows.

Proof. Consider an IoT network g including p protected links, and ĝ as its contrac-

tion. Let

(1) ν1 be the number of nodes of type 1 in ĝ (and supernodes containing only

nodes of type 1),

(2) ν2 be the number of nodes of type 2 in ĝ (and supernodes containing only

nodes of type 2),

(3) ν0 be the number of supernodes in ĝ that contains nodes of both type 1 and

2.

Note that if ν1 + ν2 + ν0 = 1, (i.e., if there is a unique supernode containing

all nodes of the network), then no non-protected link is needed to ensure any level

of (k1, k2)-resistancy. Otherwise, for the IoT network to be (k1, k2)-resistant, each

element of ν1, ν2 and ν0 must have a degree of (at least) k1 + 1. Further, if there

exist more than one element not in ν1; i.e., if ν0 + ν2 ≥ 2, then each of them should

have a degree of (at least) k2 + 1.
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Thus, a lower bound on the number of non-protected links in s̃Dp is

Φ =


ν1(k1 + 1) + (ν0 + ν2)(k2 + 1)

2
, if ν2 + ν0 > 1,

0, if ν1 + ν2 + ν0 = 1,

(ν1 + 1)(k1 + 1)

2
, if ν1 ≥ 1 and ν2 + ν0 = 1.

Next, we focus on the study of parameters ν0, ν1 and ν2. If no protected link is

used, i.e., p = 0, then ν1 = n1, ν2 = n2 and ν0 = 0 and ν0 + ν1 + ν2 = n1 + n2 = n.

Adding any protection allows to decrease the total number of elements ν1 + ν2 + ν0

by 1 (or to remain constant if the link induce a loop in a protected component of g).

Thus ν0 + ν1 + ν2 ≥ n− p. Similarly, for each subnetwork, we have ν0 + ν1 ≥ n1− p

and ν0 + ν2 ≥ n2 − p. Further, the number of elements of ν1 and ν2 are upper

bounded by the number of nodes of type 1 n1 and type 2 n2, respectively, i.e.,

ν1 ≤ n1 and ν2 ≤ n2. Finally, since n1 ≥ 1 then ν1 + ν0 ≥ 1, and since n2 ≥ 1 then

ν2 + ν0 ≥ 1. Thus, for any p, a lower bound on the number of non-protected links

in s̃Dp can be obtained by solving the following optimization problem:

min
ν1,ν2,ν0

Φ

s.t. ν0 + ν1 + ν2 ≥ n− p,

ν0 + ν1 ≥ n1 − p, ν0 + ν2 ≥ n2 − p,

ν1 ≤ n1, ν2 ≤ n2,

ν1 + ν0 ≥ 1, ν2 + ν0 ≥ 1. (3.1)

To solve this optimization problem, we consider three cases.

Case 1: First, assume that p < n2 − 1. From ν0 + ν1 + ν2 ≥ n− p, we obtain

that ν0 + ν2 > 1. Thus, (3.1) reduces to minν1,ν2,ν0
ν1(k1+1)+(ν0+ν2)(k2+1)

2
with the
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same constraints as in (3.1) except ν0 + ν2 > 1.

Since k2 ≥ k1, then the minimum of the objective is obtained when ν0 + ν2 is

minimized, i.e., when all protections involve nodes of type 2. Then, ν0 +ν2 = n2−p.

Thus, the lower bound is equal to n1(k1+1)+(n2−p)(k2+1)
2

. This result is illustrated by

the line joining points A and B in Fig. 3.1.

Case 2: Assume that n2− 1 ≤ p ≤ n1 +n2− 2. Then n− p ≤ n1 + 1. Therefore,

for a given p, i.e., for a given minimal value of ν0 + ν1 + ν2, we can have either

ν0 + ν2 > 1 or ν0 + ν2 = 1. Then, the lower bound of the number of non-protected

links is min
{
n1(k1+1)+(n2−p)(k2+1)

2
, (n−p)(k1+1)

2

}
. Recall that k2 ≥ k1, and therefore

the lower bound achieves at (n−p)(k1+1)
2

. This observation is illustrated by the line

in Fig. 3.1 joining points C and D.

Case 3: Finally, when p = n− 1, ν0 + ν1 + ν2 = 1, and thus no non-protected

link is needed, which is represented by point E in Fig. 3.1.

Based on Proposition 3.1, we further comment on the locations where protected

and non-protected links are placed in the two-layer IoT networks.

Corollary 3.1. When 0 ≤ p ≤ n2−2, the protected links purely exist in subnetwork

2. When n2 − 1 ≤ p ≤ n1 + n2 − 2, subnetwork 2 only contains protected links,

and non-protected links appear in subnetwork 1 or between two layers. When

p = n1 + n2 − 1, then all nodes in the two-layer IoT network are connected with

protected links.

Corollary 3.1 has a natural interpretation that the protected link resources are

prior to be allocated to a subnetwork facing higher cyber threats, i.e., subnetwork

2 in our setting.
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3.3.2 Networks with Special Values of p Protected Links

In the previous Section 3.3.1, we have studied for each potential number of

protected links p, a lower bound m(p) on the minimum number of non-protected

links for an IoT network with sets of nodes S1 and S2 being (k1, k2)-resistant. Then,

the cost associated with such networks is

C(p,m(p)) = pcP +m(p)cNP ,

where C : N× N→ R+. Since the goal of the designer is to minimize its cost, we

need to investigate the value of p minimizing such function C(p,m(p)).

In Fig. 3.1, we note that the plot of a network of equal cost (iso-cost) K is a

line of equation K−pcP
cNP

. It is thus a line of (negative) slope cP/cNP that crosses the

y-axis at point K/cNP . Recall also that the graph that shows m(p) as a function

of p is on the upper-right quadrant of its lower bound. Thus, the optimal value

of p corresponds to the point where an iso-cost line meets the graph m(p) for the

minimal value K. From the shape of the lower bound drawn in Fig. 3.1, the points

A, C and E are selected candidates leading to the optimal network construction cost.

We thus investigate in the following the condition under which the lower bounds

are reached at these critical points as well as the corresponding configuration of

the optimal two-layer IoT networks.

Remark: Denote by sDp a (k1, k2)-resistant IoT network with p protected links

and the minimum number of non-protected links.

Before presenting the result, we first present the definition of Harary network

in the following. Recall that for a network containing n nodes being resistant to

k link attacks, one necessary condition is that each node should have a degree of
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Figure 3.3: Illustration of Harary networks with different number of nodes and
security levels.

at least k + 1, yielding the total number of links more than
⌈

(k+1)n
2

⌉
. Here, d·e

denotes the ceiling operator. Harary network below can achieve this bound.

Definition 3.1 (Harary Network [76]). In a network containing n nodes, Harary

network is the optimal design that uses the minimum number of links equaling⌈
(k+1)n

2

⌉
for the network still being connected after removing any k links.

The constructive method of general Harary network can be described with

cycles as follows. It first creates the links between node i and node j such that

(|i − j| mod n) = 1, and then (|i − j| mod n) = 2, etc. When the number of

nodes is odd, then the last cycle of link creation is slightly different since (k+1)n
2

is

not an integer. However, the bound
⌈

(k+1)n
2

⌉
can be still be achieved. For clarity,

we illustrate three cases in Fig. 3.3 with n = 5, 7 under different security levels

k = 2, 3. Since Harary network achieves the bound
⌈

(k+1)n
2

⌉
, its computational cost

of the construction is linear in both the number of nodes n and the security level k.

Then, we obtain the following result.

Proposition 3.2. For the number of protected links p taking values of n−1, n2−1,

and 0, we successively have:
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(i) each sDn−1 contains exactly 0 non-protected link.

(ii) each sDn2−1 contains exactly
⌈

(n1+1)(k1+1)
2

⌉
non-protected links if and only if

k1 + 1 ≤ n1.

(iii) if we have the following asumptions: (i) k1 mod 2 = 1, where mod denotes

the modulus operator, (ii) n2 > k2 − k1 and (iii) n2
k1+1

2
≤ n1, then each sD0

contains exactly

⌈
n1(k1 + 1) + n2(k2 + 1)

2

⌉
non-protected links.

Proof. We successively prove the three items in the proposition in the following.

(i) Note that sDn−1 contains exactly p = n− 1 protected links. It is thus possible

to construct a tree network among the set S1 ∪ S2 of nodes that consists of only

protected links. Thus, no non-protected link is required, and the lower bound

(point E in Fig. 3.1) can be reached.

(ii) Suppose that p = n2−1. If k1 + 1 ≤ n1, we can construct any tree protected

network on the nodes of S2. Further, construct a (k1 + 1)-Harary network on the

nodes of S1 ∪ {n1 + 1}, that is the nodes of type 1 and one node of type 2. Such

construction is possible since k1 + 2 ≤ n1 + 1. The total number of non-protected

links is then exactly
⌈

(n1+1)(k1+1)
2

⌉
(point C in Fig. 3.1). Therefore, each node in

S1 ∪ {n1 + 1} is connected to k1 + 1 other nodes, and the IoT network cannot be

disconnected after removing k1 non-protected links. In addition, the subnetwork

2 is resistant to any number of attack since it is constructed using all protected

links. Note that the constructed Harary network here is optimal, in the sense

that its configuration uses the least number of links for the IoT network being (k1,

k2)-resistant.

Next, if k1 + 1 > n1, then suppose that a network g achieves the lower bound⌈
(n1+1)(k1+1)

2

⌉
. Consider its associated contracted network ĝ. Since g contains n2−1
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protected links, then ĝ is such that ν0 + ν1 + ν2 ≥ n1 + 1. From the shape of the

lower bound Φ in the proof of Proposition 3.1, then necessarily ν0 + ν2 = 1 and

ν1 = n1. Thus, all nodes in S2 need to be connected together by protected links.

Since |S2| = n2, then it requires at least n2 − 1 protected links, which equals p.

Thus, there cannot be any protected link involving nodes in set S1. In addition,

each node in S1 needs to be connected to at least k1 + 1 other nodes in the IoT

network. Since k1 + 1 > n1, then every node in S1 should connect to at least

(k1 + 1)− (n1 − 1) ≥ 2 number of nodes in S2. Recall that in a complete network

of m nodes, each node has a degree of m − 1, and the total number of links is

m(m−1)
2

. Hence, our IoT network admits a completed graph in S1 with some extra

n1((k1 + 1)− (n1 − 1)) non-protected links between two subnetworks, and in total

at least n1(n1−1)
2

+ n1((k1 + 1) − (n1 − 1)) = n1(k1 + 1) − n1(n1−1)
2

non-protected

links. Then, comparing with the lower bound, the extra number of links required

is n1(k1 + 1)− n1(n1−1)
2
− (n1+1)(k1+1)

2
= n1−1

2
(k1 + 1− n1) > 0. Thus, sDn2−1 does not

achieve the lower bound (point C in Fig. 3.1) when k1 + 1 > n1.

(iii) Finally, suppose that p = 0. We renumber the nodes in the network accord-

ing to the following sequence: 1, 2, · · · , k1+1
2
, n2,

k1+1
2

+ 1, · · · , k1 + 1, n2 + 1, k1 +

2, · · · , 3k1+1
2
, n2 + 2, · · · . Intuitively, we interpose one node in S2 after every k1+1

2

nodes in S1. Then, we first build a (k1 + 1)-Harary network among all the nodes in

S1 and S2. Note that since n2
k2+1

2
≤ n1, then the last k1+1

2
indices of the sequence

only contain nodes of type 1. Thus, by construction, there are no links between

any two nodes in S2. Then, we can further construct a (k2 − k1)-Harary network

on the nodes in S2, which is possible since n2 > k2 − k1. Thus, the constructed

IoT network is (k1, k2)-resistant, and it is also optimal since it uses the minimum

number of non-protected links.



64

Proposition 3.2 and Fig. 3.1 indicate that depending on the system parameters

(k1, k2, n1, n2) and for a given budget, the optimal IoT network can achieve at either

point A, C or E with p = 0, n2 − 1, n− 1 protected links, respectively. Notice that

when k1 + 1 > n1, s
D
n2−1 is not optimal at point C and the lower bound on the

number of non-protected links is not attained. Instead, in this case, sDn2−1 requires

n1(2k1−n1+3)
2

non-protected links in which n1(k1 − n1 + 2) are allocated between

two subnetworks, introducing protection redundancy for nodes in S2. For the IoT

network containing 0 protected link, it reaches the lower bound (point A) if we can

construct a (k1 +1)-Harary network for all nodes and an additional (k2−k1)-Harary

network for nodes only in S2. As mentioned before, the Harary network admits an

optimal configuration with the maximum connectivity given a number of links [76].

3.3.3 Optimal Strategy and Construction of IoT Networks

We investigate the optimal strategy and the corresponding construction for the

IoT network designer in this section.

3.3.3.1 Optimal Strategy

Before presenting the main result, we comment on the scenarios that we aim to

study regarding the IoT networks.

(1) First, the number of nodes is relatively large comparing with the link failure

risks, i.e., n1 ≥ k1 + 1 and n2 ≥ k2 − k1 + 1. Indeed, these two conditions

indicate that the designer can create a secure two-layer IoT network solely

using non-protected links.

(2) We further have the condition n2
k1+1

2
≤ n1, indicating that the type 2 nodes
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with higher criticality levels in S2 constitute a relatively small portion in the

IoT network comparing with these in S1. This condition also aligns with the

practice that the attacker has preferences on the nodes to compromise in the

IoT which generally only contain a small subset of the entire network.

(3) Finally, we have constraints k1 mod 2 = 1 and n2(k2 + 1) mod 2 = 0 which

are only used to simplify the presentation of the chapter (whether the number

of nodes and attacks is odd or even). However, they do not affect the results

significantly. Note that different cases corresponding to k1 mod 2 = 0 or

n2(k2 + 1) mod 2 = 1 can be studied in a similar fashion as in our current

context. The only difference is that for certain system parameters, sD0 is

not an optimal strategy comparing with sDn2−1 by following a similar analysis

in [25].

Therefore, based on the above conditions, the scenarios that we analyze are

quite general and conform with the situations in the adversarial IoT networks.

Based on Proposition 3.2, we then obtain the following result on the optimal design

of secure two-layer IoT networks. Note that the solution in Proposition 3 is optimal

to the original optimization problem presented in Section II under the considered

scenarios.

Proposition 3.3. Under the conditions that n1 ≥ k1 + 1, n2 ≥ k2 − k1 + 1,

n2
k1+1

2
≤ n1, k1 mod 2 = 1 and n2(k2 + 1) mod 2 = 0, we have the following

results:

I) Regime I: if 1 + k1 − n(k2 − k1) ≤ 0, then:

(1) if 2 cP
cNP
≥ k2 + 1 + k2−k1

n2−1
, then sD0 are optimal strategies.
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(2) if k1 +1+ k1+1
n1
≤ 2 cP

cNP
< k2 +1+ k2−k1

n2−1
, then sDn2−1 are optimal strategies.

(3) if 2 cP
cNP

< k1 + 1 + k1+1
n1

, then sDn−1 are optimal strategies.

II) Regime II: if 1 + k1 − n(k2 − k1) > 0, then:

(1) when k2 − k1 + 1 ≤ n2 <
1+k1

1+k1−n1(k2−k1)
, the optimal IoT network design

strategies are the same as those in regime I.

(2) otherwise, i.e., n2 ≥ 1+k1
1+k1−n1(k2−k1)

, we obtain

(i) if 2 cP
cNP
≥ n1(k1+1)+n2(k2+1)

n1+n2−1
, then sD0 are optimal strategies.

(ii) if 2 cP
cNP

< n1(k1+1)+n2(k2+1)
n1+n2−1

, then sDn−1 are optimal strategies.

Thus, sDn2−1 cannot be optimal in this scenario.

Proof. From Proposition 3.2 and under the assumptions in the current proposition,

sD0 , sDn2−1 and sDn−1 achieve the lower bounds of the number of links for the network

being (k1, k2)-resistant. In Fig. 3.1, note that the slope of the line between points A

and C is 1
2
(k2 + 1 + k2−k1

n2−1
), and between points C and E is 1

2
(k1 + 1 + k1+1

n1
), where

we quantify the slopes in their absolute value sense.

In regime I, i.e., 1+k1−n(k2−k1) ≤ 0, we obtain (k2 + k2−k1
n2−1

)− (k1 + k1+1
n1

) ≤ 0,

yielding that the line connecting points A and C has a higher slope than the one

joining points C and E. Thus, if the lines of iso-costs have a slope higher than the

slope of the line A-C, then the minimum cost is obtained at point A. Similarly, if

the slope is less than that of line C-E, then the minimum cost is obtained at point

E. Otherwise, the minimum is obtained at point C. Recall that the slope of the

lines of iso-costs is equal to cP/cNP which leading to the result.

In the other regime II, i.e., 1 + k1 − n(k2 − k1) > 0, the slope of line A-C

is not always greater than that of line C-E. Specifically, we obtain a threshold
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n2 = 1+k1
1+k1−n1(k2−k1)

over which the slop of line C-E is greater than line A-C.

Therefore, if n2 <
1+k1

1+k1−n1(k2−k1)
, the optimal network design is the same as those

in regime I. In addition, when n2 ≥ 1+k1
1+k1−n1(k2−k1)

, and if the slop of iso-costs lines,

i.e., cP/cNP , is larger than the slope of the line connecting points A and E, the

minimum cost is achieved at point A. Otherwise, if cP/cNP is smaller than the slop

of line A-E, the optimal network configuration is obtained at point E.

From Proposition 3.3, we can conclude that in regime I, i.e., 1+k1−n(k2−k1) ≤ 0,

when the unit cost of protected links is relatively larger than the non-protected

ones, then the secure IoT networks admit an sD0 strategy using all non-protected

links. In comparison, the secure IoT networks are constructed with solely protected

links when the cost per protected link is relatively small satisfying cP < (k1 + 1 +

k1+1
n1

)cNP/2. Note that the optimal network design strategy in this regime can

be achieved by protecting the minimum spanning tree for a connected network.

Equivalently speaking, finding a spanning tree method provides an algorithmic

approach to construct the optimal network in this regime. Finally, when the cost

per protected link is intermediate, the network designer allocates n2 − 1 protected

links connecting those critical nodes in set S2 while uses non-protected links to

connect the nodes in S1. In addition, the intralinks between two subnetworks are

non-protected ones.

Note that the specific configuration of the optimal IoT network is not unique

according to Proposition 3.3. To enhance the system reliability and efficiency, the

network designer can choose the one among all the optimal topology that minimize

the communication distance between devices.

Since the cyber threat in subnetwork 2 is more severe than that in subnetwork 1,

i.e., k2 ≥ k1, thus the condition of regime II in Proposition 3.3 (1+k1−n(k2−k1) > 0)
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is not generally satisfied. We further have the following Corollary refining the result

of optimal IoT network design in regime II.

Corollary 3.2. Only when two subnetworks facing the same level of cyber threats,

i.e., k1 = k2, the optimal IoT network design follows the strategies in regime II.

Moreover, sDn2−1 cannot be an optimal network design in regime II.

Proof. Based on the condition n1 ≥ k1 + 1, we obtain 1 + k1 − (n1 + n2)(k2 −

k1) ≤ n1 − (n1 + n2)(k2 − k1). Thus, when k2 > k1, the condition of regime II

(1 + k1 − n(k2 − k1) > 0) cannot be satisfied. Since k2 ≥ k1, then only k1 = k2

yields 1 + k1 > 0. Therefore, n2 ≥ 1+k1
1+k1−n1(k2−k1)

= 1 always holds which leads to

the result.

We then simplify the conditions leading to regime I and II as follows.

Corollary 3.3. The IoT network design can be divided into two regimes according

to the cyber threat levels. Specifically, when k2 > k1, the optimal design strategy

follows the one in regime I in Proposition 3.3, and otherwise (k1 = k2) follows the

one in regime II.

We illustrate the optimal design strategies in Fig. 3.4 according to the hetero-

geneous security requirements and link creation costs ratio.

3.3.3.2 Robust Optimal Strategy

One interesting phenomenon is that some strategies are optimal for a class of

security requirements. Thus, these strategies are robust in spite of the dynamics of

cyber threat levels. We summarize the results in the following Corollary.
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Regime I

Regime II

Figure 3.4: Optimal design of two-layer IoT networks in two regimes in terms of
system parameters. When k2 > k1, the optimal network design follows from the
strategies in regime I which can be in any sDn−1, sDn2−1 or sD0 depending on the value
of cP

cNP
. When k2 = k1, the IoT network designer chooses strategies from regime II,

either of sDn−1 or sD0 in term of the link cost ratio cP
cNP

.

Corollary 3.4. Consider to design a (k1, k2)-resistant IoT network. If sDn−1 is

the optimal strategy, then it is robust and optimal to security requirement for the

network being (k′1, k
′
2)-resistant, for all k′1 > k1 and all k′2 > k2. If sDn2−1 is the

optimal strategy, then it is robust and optimal to cyber threat levels (k1, k
′
2), for all

k′2 > k2. Furthermore, the optimal strategy sD0 is not robust to any other security

standards (k′1, k
′
2), for k′1 6= k1 and k′2 6= k2.

Corollary 3.4 has a natural understanding on the selection of robust strategies.

When the cyber threat level increases, then the optimal network sDn−1 remains to be

optimal since the network construction cost does not increase under sDn−1. Under

the optimal sDn2−1, subnetwork 2 is connected with all protected links and the rest
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is connected by a Harary network with the minimum cost. If subnetwork 2 faces

more attacks, (k2 becomes larger), then sDn2−1 is robust and optimal in the sense

that subnetwork 2 remains secure and no other non-protected link is required.

3.3.3.3 Construction of the Optimal Secure IoT Networks

We present the constructive methods of optimal IoT networks with parameters

in different regimes based on Proposition 3.3.

Specifically, the optimal sDn−1 can be constructed by any tree network using

protected links. In addition, the optimal networks sDn2−1 can be constructed in

two steps as follows. First, we create a tree protected network on the nodes of S2.

Then, we construct a (k1 + 1)-Harary network on the nodes of S1 ∪ {n1 + 1}, i.e.,

all nodes of type 1 and one node of type 2, where a constructive method of Harary

network can be found in [76].

Finally, regarding the optimal network sD0 , we build it with the following proce-

dure. First, we renumber the nodes according to the sequence: 1, 2, ..., k1+1
2
, n2,

k1+1
2

+

1, ..., k1 +1, n2 + 1, k1 +2, ..., 3k1+1
2
, n2 + 2, ... Recall that this renumbering sequence

can be achieved by interpolating one node in S2 after every k1+1
2

nodes in S1. Then,

we build a (k1 + 1)-Harary network among all the nodes in S1 and S2. Finally, we

construct a (k2 − k1)-Harary network on the nodes in S2.

3.3.3.4 Consideration of Random Link Failures

In the considered model so far, the non-protected communication link between

nodes is removed with probability 1 by the attack and remains connected without

attack. In general, the non-protected links face random natural failures. If we

consider this random failure factor, then there is a probability that the designed
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optimal network will be disconnected under the joint cyber attacks and failures.

We assume perfect connection of protected links and denote the random failure

probability of a non-protected link by κ ∈ [0, 1). Therefore, in the regime that

the optimal network design is of Harary network where all links are non-protected,

then under the anticipated level of cyber attacks, a single link failure of non-

protected link will result in the network disconnection. Thus, the probability of

network connection, i.e., mean connectivity, is equal to (1−κ)

⌈
n1(k1+1)+n2(k2+1)

2

⌉
−k2 ≈

(1 − κ)
n1(k1+1)+n2(k2+1)−2k2

2 which is of order (1 − κ)
n1k1+n2k2

2 . Similarly, under the

regime that the optimal network admits n2 − 1 protected links and
⌈

(k1+1)(n1+1)
2

⌉
non-protected links, the probability of network connection under link failure is

(1 − κ)

⌈
(k1+1)(n1+1)

2

⌉
≈ (1 − κ)

(k1+1)(n1+1)
2 which is of order (1 − κ)

k1n1
2 . We can see

that in the above two regimes, when the security requirement is not relatively high

and the size of the network is not large, the current designed optimal strategy

gives a relatively high mean network connectivity. In the regime that the optimal

network is constructed with all protected links, then the mean network connectivity

is 1 where the random failure effect is removed.

3.4 Case Studies

In this section, we use case studies of IoBT to illustrate the optimal design

principals of secure networks with heterogeneous components. The results in this

section are also applicable to other mission-critical IoT network applications.

The IoBT network designer determines the optimal strategy on creating links

with/without protection between agents in the battlefield. The ground layer and

aerial layer in IoBT generally face different levels of cyber threats which aim to
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disrupt the network communications. Since UAVs become more powerful in the

military tasks, they are the primal targets of the attackers, and hence the UAV

network faces an increasing number of cyber threats. In the following case studies,

we investigate the scenario that the IoBT network designer anticipates more cyber

attacks on the UAV network than the soldier and UGV networks. The cost ratio

between forming a protected link and a unprotected link cp
cNP

is critical in designing

the optimal IoBT network. This ratio depends on the number of channels used in

creating a safe link though MTD. We will analyze various cases in the following

studies.

3.4.1 Optimal IoBT Network Design

Consider an IoBT network consisting of n1 = 20 soldiers and n2 = 5 UAVs

(n = 25). The designer aims to design the ground network and the UAV network

resistant to k1 = 5 and k2 = 9 attacks, respectively. Hence the global IoBT network

is (5, 9)-resistant. Based on Proposition 3.3, the system parameters satisfy the

condition of regime I. Further, we have two critical points T1 := (k1 + 1 + k1+1
n1

)/2 =

3.15 and T2 := (k2 + 1 + k2−k1
n2−1

)/2 = 5.5, at which the topology of optimal IoBT

network encounters a switching. For example, when a protected link adopts 3

channels to prevent from attacks, i.e., cp
cNP

= 3, the optimal IoBT network is an sD24

graph as shown in Fig. 3.5(a). When a protected link requires 5 channels to be

perfectly secure, i.e., cp
cNP

= 5, then the optimal IoBT network is of sD4 configuration

which is depicted in Fig. 3.5(b). In addition, if the cyber attacks are difficult

to defend against (e.g., require 7 channels to keep a link safe, i.e., cp
cNP

= 7), the

optimal IoBT network becomes an sD0 graph as shown in Fig. 3.5(c). The above

three types of optimal networks indicate that the smaller the cost of a protected
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link is, the more secure connections are formed starting from the UAV network to

the ground network.

3.4.2 Resilience of the IoBT Network

The numbers of UAVs, UGVs and soldiers can be dynamically changing. To

study the resilience of the designed network, we first investigate the scenario that a

number of UGVs/soldiers join the battlefield which can be seen as army backups.

As n1 increases, the threshold T1 decreases slightly while T2 remains unchanged.

Therefore, the optimal IoBT network keeps with a similar topology except that

the newly joined UGVs/soldiers connect to a set of their neighbors. To illustrate

this scenario, we present the optimal network with n1 = 22 and cp
cNP

= 5 in Fig.

3.6(a), and all the other parameters stay the same as those in Section 3.4.1. When

n1 decreases, the network remains almost unchanged except those UGVs/soldiers

losing communication links build up new connections with neighbors. An illustrative

example with n1 = 17 is depicted in Fig. 3.6(b).

Another interesting scenario is that when the number of UAVs n2 changes due

to backup aerial vehicles joining in and current vehicles leaving the battlefield for

maintenance. When n2 increases, then the threshold T1 remains the same while

T2 decreases. If the cost ratio cp
cNP

lies in the same regime with respect to T1 and

T2 even though T2 decreases, then under cp
cNP
≤ T2, the newly joined UAV will

connect with another UAV with a protected link which either creates an SDn−1 or

sDn2−1 graph. Otherwise, if cp
cNP

> T2, the UAV first connects to other UAVs and

then connects to a set of UGVs/soldiers both with unprotected links which yields

an sD0 graph. When a number of UAVs leaving the battlefield, i.e., n2, decreases,

then T1 stays the same and T2 will increase under which the cost ratio cp
cNP

previous
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(c) sD0 IoBT network

Figure 3.5: (a) When cp
cNP

= 3 < T1, the optimal IoBT network is an sD24 graph

with all protected links. (b) When T1 <
cp
cNP

= 5 < T2, the optimal network is

an sD4 graph, where the UAV network is connected with protected links and the
ground network with all unprotected links. (c) When cp

cNP
= 7 > T3, the optimal

IoBT network adopts an sD0 configuration with all unprotected links.
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UAV network

UGV/Soldier network

Protected link

Unprotected link

Two soldiers joining in

UAV network

UGV/Soldier network

Two soldiers joining in

Zoom-in topology

Rewired links

(a)

UAV network

UGV/Soldier network

3 soldiers leaving

(b)

Figure 3.6: (a) and (b) show the optimal IoBT network reconfiguration when two
UGVs/soldiers join in and leave the battlefield, respectively.

belonging to interval cp
cNP
≥ T2 may change to interval T1 ≤ cp

cNP
≤ T2. Note that

regime switching can also happen when n2 increases. Therefore, the optimal IoBT

network switches from sD0 to sDn2−1 (for the increase of n2 case, the switching is in a

backward direction). For example, when the network contains n2 = 6 UAVs and

cp
cNP

= 5.4, and the other parameters are the same as those in Section 3.4.1, from

Proposition 3.3, the optimal IoBT network is an sD0 graph. However, Fig. 3.5(b)

shows that the optimal network adopts an sD4 topology when n2 = 5. Therefore, by

adding a UAV to the aerial layer, the optimal IoBT network switches from sD4 to

sD0 in this scenario. The interpretation is that a smaller number of UAVs is easier

for the aerial network to defend against attacks, and hence protected links are used
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between UAVs instead of redundant unprotected links.

3.4.3 Flexible Design and Robust Strategies

In this section, we further investigate the secure IoBT network design in the

presence of varying levels of cyber threats. Specifically, the parameters are selected

as follows: n1 = 20, n2 = 10, k1 = 5, and cP
cNP

= 5. The security requirement k2

takes a value varying from 5 to 14, modeling the dynamic or uncertain behaviors

of the attacker targeting at the critical UAV network. The optimal IoBT network

design is depicted in Fig. 3.7, and the corresponding cost is in shown Fig. 3.8.

When k2 ∈ J5, 8K, the optimal IoBT network is constructed with all non-protected

links. Since k2 becomes larger, the number of non-protected links used is increasing,

and thus the total cost increases. The optimal network topology switches from

sD0 to sD9 when k2 exceeds the threshold 8. Then, when k2 ∈ J9, 14K, the optimal

IoBT network is unchanged as well as the associated construction cost. Despite the

increases in k2, no addition links are required since the UAV network (subnetwork

2) is connected with all protected links. Note that sD9 is a robust strategy in the

sense that the IoBT network can be (5, k2)-resistant, for all k2 ∈ J9, 14K. This study

can be generalized to the cases when the network designer has an uncertain belief

on the attacker’s strategy. Therefore, the IoBT designer can prepare for a number

of attacking scenarios and choose from these designed strategies in the field with a

timely and flexible manner.
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Figure 3.7: Optimal IoBT network design with parameters n1 = 20, n2 = 10, k1 =
5, cP

cNP
= 5, and k2 taking a value from 5 to 14. When k2 ∈ J5, 8K, the optimal

network design is in the form of sD0 . When k2 ∈ J9, 14K, the optimal network admits
a strategy of sD9 . Note that sD9 is robust to a dynamic or varying number of cyber
attacks ranging from 9 to 14.

3.5 Summary

In this chapter, we have studied a two-layer secure network formation problem for

IoT networks in which the network designer aims to form a two-layer communication

network with heterogeneous security requirements while minimizing the cost of

using protected and unprotected links. We have shown a lower bound on the number

of non-protected links of the optimal network and developed a method to construct

networks that satisfy the heterogeneous network design specifications. We have

demonstrated the design methodology in the IoBT networks. It has been shown

that the optimal network can reconfigure itself adaptively as nodes enter or leave

the system. In addition, the optimal IoBT network configuration may encounter a

topological switching when the number of UAVs changes. We have further identified

the optimal design strategies that can be robust to a set of security requirements.
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Figure 3.8: The total cost of optimal network design in terms of the number
of non-protected links. In the regime of k2 ∈ J5, 8K, with a larger k2, the IoBT
network requires more non-protected links to be resistant to attacks. In the regime
of k2 ∈ J9, 14K, the total cost remains the same, since the UAV network is connected
with all protected links and no additional non-protected link is required despite of
the increasing cyber threats k2.

As part of the future work, we would extend the single network designer problem to

a twoplayer one, where each player designs their own subnetwork in a decentralized

way. Another direction will be generalizing the current bi-level network to more

than two layers and designing the optimal strategies.
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Chapter 4

Proactive Secure and Resilient

Co-Design of CPS Network

4.1 Introduction

The previous Chapter 3 has studied the optimal design of multi-layer IoT

networks with security considerations. Specifically, it has shown how to protect

the network by creating redundant links in the network so that networks can be

still connected despite arbitrary removal of a fixed number of links. Adding link

redundancy is an effective approach when there is no knowledge of the target of

the attacker. However, it becomes expensive and sometimes prohibitive when the

cost for creating links is costly, and the attacker is powerful. Therefore, a paradigm

shift to emphasize the recovery and response to attacks is critical, and the network

resilience becomes essential for developing post-attack mechanisms to mitigate the

impacts.

To this end, we establish a two-player dynamic three-stage network game
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formation problem in which the CPS network designer aims to keep the network

connected before and after the attack, while the objective of the adversary is to

keep the network disconnected after the attack. Note that each player has a cost

on creating or removing links. Specifically, at the first stage of the game, the CPS

network designer first creates a network with necessary redundancies by anticipating

the impact of adversarial behavior. Then, an adversary attacks at the second stage

by removing a minimum number of links of the network. At the last stage of the

game, the network designer can recover the network after the attack by adding

extra links to the attacked network.

4.2 Dynamic Game Formulation

In this section, we consider a CPS network represented by a set N of n nodes.

The CPS network designer can design a network with redundant links before the

attack for protection and adding new links after the attack for recovery. Note

that the attack action of the adversary can be enabled through cyber and physical

approaches due to the integration of modern infrastructures with information and

communication technologies. The sequence of the actions taken by the designer

and the attacker is described as follows:

(i) A Designer (D) aims to create a network between these nodes and protect it

against a malicious attack;

(ii) After some time of operation, an Adversary (A) puts an attack on the network

by removing a subset of its links;

(iii) Once the D realizes that an attack has been conducted, it has the opportunity
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to heal its network by constructing new links (or reconstructing some destroyed

ones).

In addition, the timing of the actions also play a significant role in determining

the optimal strategies of both players. We normalize the horizon of the event

from the start of the preparation of CPS protection to a time point of interest as

the time internal [0, 1]. This normalization is motivated by the observation made

in [114] where the consequences of fifteen major storms occurring between 2004

and 2012 are plotted over a normalized duration of the event. We let τ and τR

represent, respectively, the fraction of time spent before the attack (system is fully

operational) and between the attack and the healing phase. This is illustrated in

Fig. 4.1.

0 τ τ + τR 1

Attack Recovery

Figure 4.1: Attack and defense time fractions. The attacker compromises the
network at time τ , and the defender recovers it after τR amount of time.

The goal of the designer or the defender is to create protection and recovery

mechanisms to keep its network operational, i.e., connected in this case. Let E1 be

the set of links created by the defender initially (i.e., at time 0). EA ⊆ E1 is the set

of links removed (attacked) by the adversary and E2 is the set of links created by

the defender after the attack (at fraction τ + τR of the time horizon). Regardless

of the time stamp, creating (resp. removing) links has a unitary cost cD (resp.

cA). The adversary aims to disconnect the network. Thus, for any set E , we define

1E which equals 1 if the graph (N , E) is connected and 0 otherwise. Values of
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τ , τR, cA and cD are assumed as common knowledge to both D and A first, and

later we investigate the strategic selections of τ and τR. As a tie-breaker rule, if

the output/utility is the same for A, then A chooses to attack the network with

the largest number of link removals. Similarly, D chooses not to create links if its

utility is the same.

Remark: The link creation cost is treated as identical in the framework. Here, cD

can capture various application scenarios. For example, in a large complex network

with heterogeneous link costs, analyzing the strategy of D becomes intractable.

A viable choice for D is to consider the mean link creation cost captured by cD

which gives an approximation of the network. Another case is that D considers

the largest single link creation cost denoted by cD, and thus it captures the worst

case in which D is conservative in designing the strategies. In sum, considering an

identical cD is reasonable, and also it makes the technical analysis of the problem

tractable.

The utility for the designer (resp. adversary) is equal to the fraction of time

the network is connected (resp. disconnected) minus the costs of creating (resp.

removing) the links. Hence, the payoff functions of the designer and the adversary

are represented by UD and UA, respectively, as follows:

UD(E1, E2, EA) =(1− τ − τR)1E1\EA∪E2 + τ1E1

+τR1E1\EA − cD(|E1|+ |E2|),

UA(E1, E2, EA) =(1− τ − τR)(1− 1E1\EA∪E2)− cA|EA|

+τ(1− 1E1) + τR(1− 1E1\EA),

where | · | denotes the cardinality of a set. In addition, 1E1\EA∪E2 means that a

network including |N | = n nodes contains a set E1\EA ∪ E2 of links. Note that if
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the fraction of time and the cost of links metrics cannot be directly added up in

the utility functions, we can use a conversion factor to transform one metric to the

other. Therefore, the formulated utility functions for D and A are still valid.

We adopt subgame perfect Nash equilibrium (SPE) as the solution concept of

the dynamic game. Specifically, we study the SPE and analyze the strategies of the

players to the sets (E1, EA, E2). Thus, we seek triplets (E1, EA, E2) such that E2 is a

best response to (E1, EA) and that given E1, (EA, E2) is also a SPE. In other words,

the SPE involves the analysis of the following three sequentially nested problems

starting from the last stage of the designer’s recovery problem to the first stage of

the designer’s protection problem:

(i) Given the strategies E1 and EA, player D chooses

E∗2 (E1, EA) ∈ arg maxE2 UD(E1, EA, E2);

(ii) Given E1, the adversary chooses

E∗A(E1) ∈ arg maxEA UA(E1, EA, E∗2 (E1, EA));

(iii) Player D chooses

E∗1 ∈ arg maxE1 UD(E1, E∗A(E1), E∗2 (E1, EA)).

The equilibrium solution (E1, EA, E2) that solves the above three problems consis-

tently is an SPE of the two-player dynamic game.

Comments on the game formulation: In the established model, the attacking

time τ and attacker’s cost cA are assumed to be known by D. More practically,

D may have no perfect information on the attacker’s parameters, and only the

distributions of τ and cA are available. Then, D can calculate the expected values

of τ and cA. The analysis in the chapter is still valid to design the defensive strategy

of D at time 0. However, A’s behavior may not be the same as expected by D
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which leads to a random network after the attack. Thus, D needs to determine the

healing strategy A2 again at time τ . This creates another layer of decision-making

problem for D which is an optimization problem itself instead of a game as A’s

behavior has been revealed. Other than capturing the unknown parameters τ and

cA through their expected values, we can also model the game by considering the

incomplete information directly. This yields a formulation of dynamic Bayesian

game with a random type parameter including τ and cA which is nontrivial to solve.

4.3 Dynamic Game Analysis

In this section, we analyze the possible configurations of the CPS network at

SPE.

We first note that cA should be not too large, since otherwise A cannot be a

threat to D. Similarly, cD should be sufficiently small so that the D can create a

connected network:

Lemma 4.1. If cA > 1− τ , then A has no incentive to attack any link. In addition,

if cD > 1
n−1

, then D has no incentive to create a connected network.

Proof. Suppose that cA > 1− τ . Let E1 be given and φ := τ(1− 1E1). If A decides

not to remove any link, then its payoff is φ+τR(1−1E1)+(1−τ−τR)(1−1E1∪E2) ≥ φ.

Otherwise, |EA| ≥ 1 and UA(E1, E2, EA) ≤ φ + (1− τ − τR)(1− 1E1\EA∪E2)− cA +

τR(1−1E1\EA) ≤ φ+1−τ−cA < φ. Thus, it is a best response for A to play EA = ∅.

Similarly, if cD > 1
n−1

, then if D plays E1 = E2 = ∅, its utility is 0. Otherwise, its

utility is bounded above by 1− (n− 1)cD which corresponds to a connected tree

network with the minimum number of links.

In the following, we thus suppose that cA < 1− τ and cD < 1
n−1

.
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Note that the SPE can correspond only to a set of situations summarized as

follows.

Lemma 4.2. Suppose that (E1, EA, E2) is an SPE. Then, we are necessarily in one

of the situations given in Table 4.1.

Situation 1E1 1E1\EA 1E1\EA∪E2

1 1 1 1
2 1 0 1
3 1 0 0
4 0 0 1
5 0 0 0

Table 4.1: Different potential combinations of values of 1E1 , 1E1\EA and 1E1\EA∪E2

at the SPE.

Proof. Note that, in total, 8 situations should be possible. However, if 1E1 = 0, then

it is impossible that 1E1\EA = 1. Therefore, the situations where (1E1 , 1E1\EA , 1E1\EA∪E2)

equaling to (0, 1, 0) and (0, 1, 1) are not possible. Further, if 1E1\EA = 1, then it is im-

possible that 1E1\EA∪E2 = 0. Thus, the situation (1E1 , 1E1\EA , 1E1\EA∪E2) = (1, 1, 0)

is impossible. All other combinations are summarized in Table 4.1.

In Situations 4 and 5, D does not create a connected network in the beginning,

and thus A has no incentive to attack the network at phase τ . The structure of

the SPE depends on the values of the parameters of the game. In particular, it

depends on whether D has incentive to fully reconstruct (heal) the system after the

attack of A. More precisely, if 1− τ − τR > (n− 1)cD, then D prefers to heal the

network even if all links have been compromised by the attacker. Otherwise, there

should be a minimum number of links remained after the attack for the D to heal

the network at the SPE. We sequentially analyze these two cases in Sections 4.4.1

and 4.4.2, respectively.
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4.4 SPE Analysis of the Dynamic Game

Depending on the parameters, we derive SPE of the dynamic game in two

regimes: 1− τ − τR > (n− 1)cD and the otherwise in this section.

Before presenting the results, we first present the definition of Harary network

[76] which plays an essential role in the SPE analysis. For a network containing n

nodes being resistant to k link attacks, one necessary condition is that each node

should have a degree of at least k + 1, yielding the total number of links more than⌈
(k+1)n

2

⌉
, where d·e denotes the ceiling operator. Harary network presented below

can achieve this lower bound on the number of required links.

Definition 4.1 (Harary Network [76]). In a network containing n nodes, Harary

network is the optimal design that uses the minimum number of links equaling⌈
(k+1)n

2

⌉
for the network still being connected after removing any k links.

The constructive method of general Harary network can be described with cycles

as follows. It first creates the links between node i and node j such that (|i− j|

mod n) = 1, and then (|i− j| mod n) = 2, etc. When the number of nodes is odd,

then the last cycle of link creation is slightly different since (k+1)n
2

is not an integer.

However, the bound
⌈

(k+1)n
2

⌉
can be still be achieved.

Another critical network topology used in the analysis is the tree network defined

as follows.

Definition 4.2 (Tree network [68]). A tree is an undirected graph in which any

two nodes are connected by exactly one path. Equivalently, the network is a tree if

and only if it is connected and acyclic (contains no cycles).
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4.4.1 Regime 1: 1− τ − τR > (n− 1)cD

In the case where 1− τ − τR > (n− 1)cD, D always reconstructs the network

to be connected after the attack. The potential SPE can occur in only three of the

Situations in Table 4.1, and we summarize them in the following proposition.

Proposition 4.1. Suppose that 1− τ − τR > (n− 1)cD and let kRA ≡
⌊
τR
cA

⌋
, where

b·c denotes the floor operator (resp. to the ceiling operator d·e). Note that kRA is

the largest number of links that A can compromise to have a nonnegative payoff.

Then, the SPE of the game is unique and satisfies:

(1) If τR < cA, then UD = 1− (n− 1)cD and UA = 0 (Situation 1).

(2) Otherwise, i.e., τR ≥ cA, and

(i) if τ > cD and τR > cD

⌈
n(kRA−1)

2

⌉
or if τ < cD and τ+τR > cD

⌈
n(kRA−1)

2
+ 1
⌉

,

then the SPE satisfies UD = 1− cD
⌈
n(kRA+1)

2

⌉
UA = 0

(Situation 1).

(ii) If τ > cD and τR < cD

⌈
n(kRA−1)

2

⌉
, then the SPE satisfies

 UD = 1− τR − ncD

UA = τR − cA
(Situation 2).

(iii) If τ < cD and τ + τR < cD

⌈
n(kRA−1)

2
+ 1
⌉

, then the SPE satisfies UD = 1− τ − τR − (n− 1)cD

UA = τ + τR

(Situation 4).

Proposition 4.1 is a direct consequence of the following lemma. Note that the

conditions in Proposition 4.1 are obtained via comparing D’s utility UD at various

SPEs in Table 4.2.
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Lemma 4.3. Suppose that 1− τ − τR > (n− 1)cD. The potential SPEs have the

properties given in Table 4.2.

Situation |E1| |EA| |E2| UD UA

1&kRA > 0
⌈
n(kRA+1)

2

⌉
0 0 1− cD

⌈
n(kRA+1)

2

⌉
0

1&kRA = 0 n− 1 0 0 1− (n− 1)cD 0
2 n− 1 1 1 1− τR − ncD τR − cA
4 0 0 n− 1 1− τ − τR − (n− 1)cD τ + τR

Table 4.2: Different potential SPEs when 1−τ −τR > (n−1)cD (Note: kRA =
⌊
τR
cA

⌋
).

Proof. First note that any connected network contains at least n− 1 links. Con-

versely, any set of nodes can be made connected by using exactly n− 1 links (any

spanning tree is a solution). We consider a situation where 1E1\EA = 0. Then, either

D decides not to heal the network and receives a utility of U∗ = τ1E1 − cD|E1|,

or it decides to heal it (by using at most n − 1 links) and receives a utility

of at least U = (1 − τ − τR) + τ1E1 − cD(|E1| + n − 1). The difference is

U − U∗ = (1 − τ − τR) − cD(n − 1) > 0. Thus, D always prefers to heal the

network after the attack of A. Therefore, Situations 3 and 5 contain no SPE.

Next we consider Situation 4. Since 1E1\EA∪E2 = 1, then D needs to create in

total at least n − 1 links: |E1| + |E2| ≥ n − 1. Therefore, an optimal strategy is

E1 = ∅ and |E2| = n− 1. Since E1 = ∅, the optimal strategy of A is EA = ∅.

In Situation 2, (N , E1) is connected, and thus |E1| ≥ n − 1. Further, 1E1 = 1

and 1E1\EA = 0, and thus |EA| ≥ 1. Since 1− τ − τR > (n− 1)cD, then A should

remove the minimum number of links to disconnect the network, and we obtain

the result.
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Finally, in Situation 1, since 1E1\EA = 1, then D does not need to create any

link during the healing phase: E2 = ∅. Since 1 − τ − τR > (n − 1)cD, then A

attacks at most kRA links if and only if it obtains a nonnegative reward, i.e., kRA

is the largest integer such that τR − cAkRA ≥ 0 which yields kRA =
⌊
τR
cA

⌋
. Thus, D

designs a network that is resistant to an attack compromising up to kRA links. Such

solution network is the (|N |, kRA + 1)-Harary network [76].

Examples: For clarify, we depict the strategies of D and A at various SPEs

using examples shown in Fig. 4.2. The network contains 5 nodes. Depending on

the relationship between parameters shown in Proposition 4.1, the game admits

various SPEs. Four possible SPEs with specific actions taken by D and A are

presented. For example, when the SPE lies in Situation 1 with kRA = 3, then at

least 10 links are necessary for the network being resistant to 3 attacks. Therefore,

D creates a 4-Harary network initially in which each node has at least a degree

of 4. In comparison, when kRA = 0 and the SPE is in Situation 1, then creating a

connected tree network is sufficient for D since A is not capable to compromise any

link. The SPEs corresponding to Situations 2 and 4 are shown in Figs. 4.2(c) and

4.2(d), respectively.

Based on Lemma 4.3, the stragies of two players at SPE in regime 1 are

summarized as follows. Under Situation 1 and kRA > 0, A does not attack and D

creates a connected (|N |, kRA + 1)-Harary network at phase 0. Under Situation 1

and kRA = 0, D simply creates a connected network with the minimum number of

n− 1 links which can be achieved by any tree-structured network, and A admits

a null strategy. In Situation 2, D initially constructs a tree network using n− 1

links, and A attacks any one link at phase τ followed by D recovering the network

at phase τ + τR. Finally, for Situation 4, A does not attack, and D constructs a
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(a) Situation 1 and kRA = 3

(b) Situation 1 and kRA = 0

(c) Situation 2

(d) Situation 4

Figure 4.2: Strategies of D and A at different SPEs in regime 1. The network
contains 5 nodes. In (a), the SPE is in Situation 1 and kRA = 3. Thus, at least 10
links are necessary for it being resistant to 3 attacks. In (b), when kRA = 0 and
the SPE lies in Situation 1, a tree network is created by the defender following no
actions of A and D. In (c), the SPE is in Situation 2, and A will compromise any
one link at time τ and D will heal one link to reconnect the network. In (d), D
will not protect the network at time 0 but will connect the network at time τ + τR
which shows SPE in Situation 4.

connected tree network only at phase τ + τR.
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4.4.2 Regime 2: 1− τ − τR < (n− 1)cD

We now consider the case where D has an incentive, at phase τ + τR, to heal

the network if at most k links are required to reconnect it, where k < n− 1 and

k ≡
⌊

1− τ − τR
cD

⌋
. (4.1)

We sequentially study the potential SPE in Situations 3, 4 and 5 in Lemma 4.4,

Situation 2 in Lemma 4.5, and Situation 1 in Lemma 4.6.

Lemma 4.4. If 1− τ − τR < (n− 1)cD, we have the following results:

(i) Any SPE in Situation 3 satisfies E2 = ∅, |EA| = k+1 and |E1| = n−1, leading

to utilities UD = τ − (n− 1)cD and UA = 1− τ − (k + 1)cA (occurs only if

b1−τ
cA
c ≥ k + 1);

(ii) There exists no SPE in Situation 4;

(iii) The only potential SPE in Situation 5 is the null strategy: E1 = E2 = EA = ∅,

leading to utilities UD = 0 and UA = 1.

Proof. Suppose that an SPE occurs in Situation 5. Since the network is always

disconnected, then UD = −cD(|E1|+ |E2|). The maximum utility is obtained when

E1 = E2 = ∅. Thus, EA = ∅.

In Situation 4, since any connected network contains at least n− 1 links, then

the maximum utility of D is UD(E1, E2, EA) = (1− τ − τR)− cD(n− 1) < 0. Thus,

D is better off with a null strategy (occurring in Situation 5).

In Situation 3, since 1E1 = 1 then |E1| ≥ n − 1. D can achieves utility value

τ − (n − 1)cD by playing a tree network. Since 1E1\EA 6= 1E1 then |EA| ≥ 1 and
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Figure 4.3: The SPE lies in Situation 3 with k = 1. Thus, D will only create a
tree network followed by A compromising any 2 links to disconnect the network,
and D does not recover at time τ + τR.

UA ≤ 1− τ − cA. The bound is achieved by attacking any one link created by D.

We further can show that A needs to attack k + 1 links such that D will not heal

the network.

Example: In regime 2, for SPEs in Situation 5, the network remains empty since

D does not protect nor heal. An illustration of SPE in Situation 3 with k = 1 is

depicted in Fig. 4.3. Specifically, D creates a connected network with tree structure

initially. Then, A compromises any k + 1 = 2 links to disconnect the network.

Since D is willing to recover at most k = 1 link, D does not heal the network at

time τ + τR.

In the following, we focus on the SPEs in Situations 1 and 2. In both cases,

1E1 = 1. Thus, D creates a connected network initially. For each node i ∈ N , let

di be its degree. To facilitate the analysis, we focus on the potential best response

strategies of A to E1 which are summarized in the following three distinct cases:

(i) A does not attack and obtains a utility of U
(1)
A = 0;

(ii) A attacks sufficiently many links so that the network admits 2 components,

i.e., A attacks exactly min1≤i≤n di links to disconnect a node of minimal
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degree. Then, D heals the network by constructing 1 link, and A receives

utility

U
(2)
A = τR − ( min

1≤i≤n
di)cA. (4.2)

(iii) A attacks sufficiently many links so that the network admits `+2 components,

for some sufficiently large ` (whose exact value is discussed in the following

two lemmas). Then, D does not heal the network, and A receives utility

U
(3)
A = 1− τ − |EA|cA. (4.3)

Note that any intermediate value of components in the range J2; `+ 2K cannot

happen at SPE since it amounts to a lower utility for A. The current case

(iii) belongs to Situation 3 which eases the analysis in Lemmas 4.5 and 4.6.

The next lemma characterizes the SPEs for Situation 2.

Lemma 4.5. The only SPEs in Situation 2 are such that |E1| = n− 1, |EA| = 1,

|E2| = 1, UD = 1 − τR − ncD, and UA = τR − cA. Furthermore, it occurs only if

cA ≤ τR and
⌊

1−τ−τR
cD

⌋
>
⌊

1−τ−τR
cA

⌋
.

Proof. At an SPE in Situation 2, the utility of D is of the form 1− τR − cD(|E1|+

|E2|). Then, it is a best strategy for D to heal the network at time τ + τR,

i.e., 1 − τR − (|E1| + |E2|)cD ≥ τ − |E1|cD. Thus, |E2| ≤
⌊

1−τ−τR
cD

⌋
= k, and k is

the maximum number of links that D can create at time τ + τR at an SPE.

In addition, at this SPE, D receives a higher reward than by using its best

strategy in Situation 3, i.e., 1 − τR − (|E1| + |E2|)cD ≥ τ − (n − 1)cD. Thus,

|E1|+ |E2| ≤
⌊

1−τ−τR
cD

⌋
+ (n− 1) = k + (n− 1). Since k < n− 1, then altogether D

can create at most |E1|+ |E2| ≤ 2(n− 1) links.
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For any SPE in Situation 2, note that |E1| ≥ n − 1. Thus, we can write

|E1| = n − 1 + α and |E2| ≤ k − α, for some α < k. For Situation 2, we obtain

U
(2)
A ≥ U

(1)
A which yields (min1≤i≤n di) ≤

⌊
τR
cA

⌋
. If τR < cA, then no SPE exists in

Situation 2. Further, based on 0 ≤ U
(2)
A −U

(3)
A = (|EA|−(min1≤i≤n di))cA−(1−τ−τR),

we obtain |EA| ≥
⌈

1−τ−τR
cA

⌉
+ (min1≤i≤n di). Since at τ + τR, D can create at most

k − α links, then the goal of A in case (iii) is to create at least ` = k − α + 2

components in the network (i.e., to create a k − α+ 1 cut). Hence, D constructs

E1 in a way that at least kA + (min1≤i≤n di) links need to be removed so that the

network consists of k + 2− α components, where kA :=
⌈

1−τ−τR
cA

⌉
.

Recall that k =
⌊

1−τ−τR
cD

⌋
is the maximal number of links that D can recover at

phase τ + τR. Suppose that k < kA (i.e., k ≤ kA − 1). Then, for any E1, consider

the following attack: first remove α links so that the resulting network is a tree and

then remove k2 + 1−α links. Then, the resulting network has exactly n− 2− k+α

links, i.e., it has n− (n− 2− k + α) = k− α+ 2 components and is obtained using

k + 1 < kA + (min1≤i≤n di) links. Thus, if k < kA, no SPE in Situation 2 exists.

If k > kA + 1 (i.e., k ≥ kA), then we consider the strategy that D creates a line

network at time 0. Then to induce k+ 2 components, A needs to remove k+ 1 links.

However, due to k > kA + 1, it is not of the best interest to A. Instead, the best

response for A is to attack exactly one link (one being adjacent to one of the nodes

with degree 1). Then, the best strategy for D is to re-create this compromised

link at time τ + τR which is an SPE. It is strategic as it minimizes the number of

created links.

In Lemma 4.5, the condition cA ≤ τR ensures that A has an incentive to

compromise the network, and the condition
⌊

1−τ−τR
cD

⌋
>
⌊

1−τ−τR
cA

⌋
guarantees that

D is capable to heal the network after the attack. Note that when these two
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conditions are satisfied, all other strategies that D creates a tree network at phase

0 and A attacks one link which is further reconnected by D also constitute SPEs of

Situation 2.

To study the SPE in Situation 1, for convenience, we denote

kRA ≡
⌊
τR
cA

⌋
and kHA ≡

⌊
1− τ
cA

⌋
,

where kRA (resp. kHA ) corresponds to the maximal number of attacks that A is

willing to deploy to disconnect the network during the phase interval [τ, τ + τR]

(resp. [τ, 1]) so that U
(2)
A (resp. U

(3)
A ) achieves a positive value.

The following lemma characterizes the possible SPEs in Situation 1.

Lemma 4.6. If τR/cA > n− 1 or
⌊

1−τ
cA

⌋
>
⌊

1−τ
cD

⌋
, then no SPE exists in Situation

1. Otherwise, let

δ =



⌈
n(kRA+1)

2

⌉
if k ≥ 1 and kRA > 1,⌈

n(kHA+1)
2

⌉
if k = 0 and kRA > 1,

n if kHA = k + 1 and kRA = 1,

n+
⌊
n
k

⌋
+

⌈
bnkc

2

⌉
if kHA 6= k + 1 and kRA = 1,

n− 1 if kHA = k and kRA = 0,

n if kHA 6= k and kRA = 0.

(4.4)

If 1 < δcD or if 1−τ < (δ−n+1)cD, then no SPE in Situation 1 exists. Otherwise,

the unique SPE is such that UD = 1− δcD and UA = 0.

Proof. When τR/cA > n− 1, A always attacks the network at phase τ , and hence

Situation 1 is not possible. The SPE in Situation 1 satisfies U
(1)
A > U

(2)
A and
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U
(1)
A > U

(3)
A . Thus, the goal of D is to create a network with the minimal cost

such that all nodes have a degree of at least
⌊
τR
cA

⌋
+ 1 = kRA + 1, and at least⌊

1−τ
cA

⌋
+ 1 = kHA + 1 links need to be removed to yield a network with k + 2

components (i.e., the minimum (k + 1)-cut requires at least
⌊

1−τ
cA

⌋
+ 1 links). For

kRA ≥ 1, we consider the strategy of D that consists in creating an (|N |, kRA + 1)-

Harary network. Thus,

|E1| ≥



⌈
n(kRA+1)

2

⌉
if kRA ≥ 2,

n if kRA = 1,

n− 1 otherwise.

(4.5)

Let kHD ≡
⌊

1−τ
cD

⌋
. First, suppose that kHD < kHA , and at phase 0, D constructs a

network with (n− 1) + k links for some k ≤ kHD . Consider the strategy for A that

consists in attacking randomly kHA links. Since kHA > kHD ≥ k, then the resulting

network has less than n− 1 links and is thus disconnected. At phase τ + τR, D can

reconstruct at most (n−1) +kHD − (n−1)−k = kHD −k links. Then, the network at

phase τ+τR would contain at most (n−1)+k−kHA +kHD−k = (n−1)+kHD−kHA < n−1

links, and the network is disconnected. Therefore, no SPE exists in Situation 1 if

kHD < kHA .

Conversely, suppose that kHD ≥ kHA . Then, we have kRA ≤
⌊
τR
cD

⌋
. Furthermore,

kHA ≤ kHD ⇒ 1
cA
− 1

cD
< 1

1−τ ⇒
1−τ−τR

cA
− 1−τ−τR

cD
< 1−τ−τR

1−τ < 1, which gives⌊
1−τ−τR

cA

⌋
≤ k. Then, by definition, kHA =

⌊
1−τ
cA

⌋
=
⌊

1−τ−τR
cA

+ τR
cA

⌋
≤
⌊

1−τ−τR
cA

⌋
+⌊

τR
cA

⌋
+ 1 ≤ k + kRA + 1. Hence, we obtain kHA ≤ k + kRA + 1. Based on the obtained

results, we next focus on four distinct cases and derive their corresponding SPEs.

Case 1 (k > 0 and kRA > 1): If kRA ≥ 3, then kRA + 1 link removals are needed
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to disconnect the network, and any further additional component creation requires

to remove at least 2 links. Thus, at least 2k+ kRA + 1 link removals are necessary so

that the network has k + 2 components. Then, based on 2k + kRA + 1 > kHA + 1, A

does not attack the network. If kRA = 2, and if k ≤
⌊
n
2

⌋
, then at least kRA + 1 + 2k

link removals are required, and otherwise (i.e., k >
⌊
n
2

⌋
) kRA + 1 + k link removals

are necessary. Thus, A does not attack the network.

Case 2 (k = 0 and kRA > 1): In this case, we have kHA ≤ kRA + 1. A only needs

to disconnect the network since D does not heal due to k = 0. Thus, if kRA > 1, D

creates an (|N |, kHA + 1)-Harary network at phase 0.

Case 3 (kRA = 0): In this case, if kHA = k, then D creates a tree network which

is an optimal strategy. Otherwise, kHA = k + 1 in which case D creates a ring

network.

Case 4 (kRA = 1): In this scenario, if kHA = k + 1, then the ring network, i.e.,

the (|N |, 2)-Harary network, is optimal for D. Otherwise, if kHA = k + 2, then D

needs to create a network of minimal cost such that no k cut exists with k + 1

links. To this end, we consider the following network. For each i ∈ N , we create a

link between nodes i and (i+ 1) mod n (ring network). Then, we connect node k

to node 2k, and connect node 2k to node 3k, and so on. If
⌊
n
k

⌋
is even, then we

connect node k
⌊
n
k

⌋
to node 0. Otherwise, we connect node 0 to any node of the

network excluding 1 and n− 1. Thus, the resulting network contains no k cut of

size k+ 1 links and is minimal in terms of the number of links. The resulting utility

for D is UD = 1− (n+
⌊
n
k

⌋
+

⌈
bnkc

2

⌉
)cD.

By defining δ as in (4.4), the condition 1 < δcD ensures a positive utility for D

at SPE of Situation 1. The condition 1− τ < (δ − n+ 1)cD guarantees that the

SPE is achieved in Situation 1 instead of in Situation 3.
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Figure 4.4: The SPE lies in Situation 1 with δ = 5 (kHA = 2 and kRA = 1). Thus, D
creates a 2-Harary network with the ring topology. A will not attack and thus D
does not heal the network.

Example: For clarity, an illustration of SPE in Situation 1 with δ = 5 is depicted

in Fig. 4.4. There are 5 nodes in the network and the parameters are kHA = 2 and

kRA = 1. Specifically, D creates a 2-Harary network with the ring topology initially.

Then, A is not capable to attack. The network remains connected over the entire

time period.

For convenience, the results of Lemmas 4.4, 4.5 and 4.6 are summarized in

Table 4.3.

Situation |E1| |EA| |E2| UD UA
1 δ 0 0 1− cDδ 0
2 n− 1 1 1 1− τR − ncD τR − cA
3 n− 1 k + 1 0 τ − (n− 1)cD 1− τ − (k + 1)cA
5 0 0 0 0 1

Table 4.3: Different potential SPEs when 1− τ − τR < (n− 1)cD (Note: δ is given

by Eq. (4.4), and k =
⌊

1−τ−τR
cD

⌋
).

We next comment on the strategies of D and A at SPEs. Specifically, the

players’ strategies in Situation 2 under regime 2 are the same as the corresponding
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ones under regime 1. In Situation 3, D creates a tree network at time 0 and does

not heal it after A compromising any k + 1 links at phase τ . Depending on the

system parameters, in Situation 1, D creates a connected network using δ links

either in a tree, ring or Harary network topology, and A does not attack.

Remark: In the previous two Sections 4.4.1 and 4.4.2, we have not explicitly

determined those SPEs satisfying the boundary conditions. Note that at boundaries

where multiple SPEs could be feasible, the defender playing a leader role will first

choose the one that yields the highest utility. Then, after fixing the defender’s

strategy, the attacker selects the SPE that maximizes its payoff.

4.4.3 Discussions on Constrained Action Set of A

In some scenarios, A may not be capable to attack a particular set of links due

to constraints. Thus, some links initially created by D cannot be compromised

by A, and they can be regarded as secure links. The major SPE analysis of this

chapter is still valid for this constrained scenario with extra considerations on A’s

feasible action set. We present the results for this extension in regime 1 briefly as

follows, and the results in regime 2 can be obtained using similar arguments.

First, we consider the case that every node can create at least one secure link

with other nodes. Then the SPE in Situation 1 under kRA > 0 becomes as |E1| = n−1,

|EA| = 0, and |E2| = 0. In this subcase, D can create a connected network with all

secure links using a tree topology and thus Harary network, |E1| =
⌈
n(kRA+1)

2

⌉
, is

not optimal to D. Furthermore, Situation 2 is not possible as the network created

by D cannot be attacked. In addition, Situation 4 remains the same in this case.

We next investigate cases in Situation 2. Indeed, SPE in Situation 2 occurs if there

exists at least a single link in the tree network created by D at phase 0 which is
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insecure. Then, A disconnects the network by compromising this vulnerable link.

Finally, we analyze the case when a subset of nodes in the network can form secure

links with others. In this scenario, the results of Situation 1 & kRA = 0, Situation

2, and Situation 4 in Table 4.2 still hold. For Situation 1 & kRA > 0, D does not

need to create a Harary network at phase 0 as some created links are secure. To

this end, we can leverage network contraction [37] to derive the SPE. Network

contraction refers to the principle that if there is a secure link between two nodes,

we can aggregate them together and see them as a single super node. In Situation

1 & kRA > 0, depending on the places where secure links can be formed, it leads to

different policies for D at phase 0. We illustrate the design principle for Situation

1 & kRA > 0 in Fig. 4.5. In this example, |E1| = 5 is sufficient in the constrained

scenario for D to construct a secure network at time 0, while it requires |E1| = 6

links in the unconstrained counterpart.

4.5 Network Resilience and Strategic Attack

In this section, we investigate the impact of network resilience on the SPE of

the dynamic game and the attacker’s behavior on the timing of attack.

4.5.1 Resilience Planning

The CPS network resilience is measured by the response and recovery time after

the cyber attack which is τR in our scenario. Thus, instead of merely maximizing

UD, the network operator should also take resilience metric τR into account. Thus,
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Figure 4.5: Illustration of network contraction for designing D’s optimal strategy
when a subset of nodes can form secure links with others. In the example, 6 links
are required for the network being resistant to 2 link removals if A can compromise
any link. When links (1,2) and (1,3) cannot be attacked, nodes 1, 2, and 3 can
be aggregrated as a super node by network contraction. Then, node 4 connects
with the super node using 3 links. In sum, 5 links are sufficient for this constrained
scenario which is different from the unconstrained case.

the aggregated objective function of D can be formulated as follows:

FD(E1, E2, EA, τR) = UD(E1, E2, EA)−RD(τR), (4.6)

where RD : [0, 1]→ [0, 1] quantifies the normalized system resilience cost. Specifi-

cally, RD is a monotonically decreasing function with respect to τR. By considering

the SPE of the dynamic game, D chooses the best τR that results in an optimal

utility FD.

Based on Section 4.4, we obtain the following results. In regime 1 with agile

resilience, i.e., τR < 1 − τ − (n − 1)cD, the utilities of D under various SPE are
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summarized in Table 4.4.

Situation FD

1&kRA > 0 1− cD
⌈
n(kRA+1)

2

⌉
−RD(τR)

1&kRA = 0 1− (n− 1)cD −RD(τR)
2 1− τR − ncD −RD(τR)
4 1− τ − τR − (n− 1)cD −RD(τR)

Table 4.4: Utilities of D under different potential SPE when 1− τ − τR > (n− 1)cD

(Note: kRA =
⌊
τR
cA

⌋
).

Similarly, in regime 2 with τR > 1− τ − (n− 1)cD, D’s utilities with different

scenarios are presented in Table 4.5.

Situation FD
1 1− cDδ −RD(τR)
2 1− τR − ncD −RD(τR)
3 τ − (n− 1)cD −RD(τR)
5 0

Table 4.5: Utilities of D under different potential SPE when 1− τ − τR < (n− 1)cD
(Note: δ is given by Eq. (4.4)).

Remark: Under different regimes and situations, the aggregated payoff FD

of D admits various forms. Comparing the values of FD in Tables 4.4 and 4.5,

the designer selects a τR that yields the largest FD, and the corresponding SPE

strategies can be determined based on Tables 4.2 and 4.3.
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4.5.2 Strategic Timing of Attack

The attacker’s behavior depends on the recovery ability of the network. When

A decides to compromise the network, then choosing the attacking phase τ also

becomes a critical issue. Specifically, for a given τR, A needs to decide the value

of τ . As shown in Lemma 4.2, A compromises the network only if D creates a

connected network initially. Thus, we focus on two Situations: 2 and 3. Proposition

4.1 indicates that when Situation 2 is an SPE, the corresponding utility of A is

UA = τR − cA which does not depend on the attacking phase τ . In an SPE of

Situation 3, D does not heal the network after attack, and the utility of A is

UA = 1 − τ − (k + 1)cA. Hence, the timing of attack τ has an influence on A’s

payoff. In another case when SPE takes a form of Situation 4, A’s utility is τ + τR

which is also influenced by the attacking phase. Despite that A does not attack, its

action induces a threat to the network. We summarize the results in the following

Lemma.

Lemma 4.7. When SPE of the game admits a form of Situation 3, then the best

timing of attack for A is to choose the smallest τ in the set {τ
∣∣τ ≥ 1−τR

(n−1)cD
,
⌊

1−τ
cA

⌋
≥⌊

1−τ−τR
cD

⌋
+ 1}. When SPE takes a form of Situation 4, then the best τ for A is

choosing the largest value in the set {cD, 1− τR− (n− 1)cD, cD

⌈
n(kRA−1)

2
+ 1
⌉
− τR}.

When SPE of the game is of another form except for Situations 3 and 4, then τ

does not affect the utility of A.

Proof. The attacker chooses a τ to maximize its utility 1− τ − (
⌊

1−τ−τR
cD

⌋
+ 1)cA

while satisfying the conditions b1−τ
cA
c ≥

⌊
1−τ−τR
cD

⌋
+ 1 and 1− τ − τR < (n− 1)cD.

The objective function indicates that a smaller τ yields a higher payoff of A. Thus,

the best timing of attack is the smallest τ resulting in an SPE of Situation 3.
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We relax the strict inequality constraint by including the boundary, since when

τ = 1−τR
(n−1)cD

, D does not heal the network and Situation 3 is still an SPE. Similarly,

in Situation 4, those boundary values of τ at the inequality constraint are feasible

since D chooses not to create a connected network if the payoffs are the same.

In Situation 3, A prefers to attack the network in an early phase which aligns

with the fact that D does not recover the network, and hence A receives the total

rewards after τ . In contrast, A chooses to compromise the network at a larger

phase τ in Situation 4 (though he does not really attack since the network is not

connected), which extracts all the utility from time 0 to τ + τR.

4.6 Case Studies

In this section, we use case studies of UAV-enabled communication networks to

corroborate the obtained results. UAVs become an emerging technology to serve

as communication relays, especially in disaster recovery scenarios in which the

existing communication infrastructures are out of service [132]. In the following,

we consider a team of n = 10 UAVs. The normalized unitary costs of creating and

compromising a communication link between UAVs for the operator/defender and

adversary are cD = 1/20 and cA = 1/8, respectively.

4.6.1 Illustrations of SPEs (Results in Section 4.4)

First, we illustrate SPE of the game when network resilience cost and timing

of attack are not considered (results in Section 4.4). Specifically, the adversary

attacks the network at phase τ = 0.3, and the defender heals it after τR = 0.2.

The UAV-enabled communication network configuration at SPE is shown in Fig.
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UAV-based 
comm. network

Figure 4.6: UAV-enabled communication networks for disaster recovery. The UAVs
form a tree network at SPE (τ = 0.3, τR = 0.2).

4.6 which admits a tree structure, and A does not attack the network at SPE.

In addition, the utilities for D and A at SPE with τR ∈ [0, 0.6] are shown in

Fig. 4.7. The SPE encounters switching with different τR. As τR increases, the

UAV network operator needs to allocate more link resources to secure the network.

Otherwise, the attacker has an incentive to compromise the communication links

with a positive payoff. Specifically, when τR < 0.375, A does not attack the UAV

network, and D obtains a positive utility by constructing a securely connected

network. The secure network admits various structures depending on τR. As shown

in Fig. 4.7, it can be in a tree network or a Harary network and the SPEs are in

Situation 1. When 0.375 < τR < 0.5, the defender creates a connected network

with the minimum effort, i.e., 9 links, at phase 0. In this interval, the attacker will

successfully compromise the system during phase [τ, τ + τR], and the defender heals

the network afterward. The initially connected network in this regime admits a tree

structure, and it may not be the same as the one created in the regime of τR < 0.375.

When τR exceeds 0.5, the defender does not either protect or heal the network. The
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Figure 4.7: Utilities for D and A at SPE with varying τR. The SPEs and the
strategies of D and A are different with the increase of τR.

reason is that a larger τR provides more incentives for the attacker to compromise

the links and receive a higher payoff. Furthermore, the aggregated utility for the

defender from two intervals, i.e., from the initial phase to the attacking phase and

from the recovery phase to the terminal phase, is small, and hence it does not

provide sufficient incentive for the defender to protect and recover the network.

This also indicates that agile resilience is critical in mitigating cyber threats in the

CPS networks.

4.6.2 Strategic Resilience Planning

Next, we take into account the cost of network resilience and study its impact

on the SPE. The cost function of resilience is RD(τR) = (τR − 1)4. The convexity

of RD indicates that the marginal cost of resilience increases as τR decreases. The
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Figure 4.8: Defender’s utility with varying τR by considering the resilience cost.
The optimal resilience planning is achieved at τR = 0.25. Values of τR in the interval
[0, 0.16] ∪ [0.375, 0.6] are not feasible since FD is negative.

timing of attack is fixed to τ = 0.3 in this case study. The equilibrium strategies

of both players under costly network resilience are illustrated in Fig. 4.8. Based

on the analysis in Section 4.5.1, D chooses a τR that maximizes the net utility FD.

Though UD is larger in a regime with smaller values of τR, the cost of agile network

resilience is much higher for it being the best strategy of designer. In addition,

the defender will not choose a τR in the intervals [0, 0.16] ∪ [0.375, 0.6] since FD is

negative. Hence, the optimal resilience planning of D is τR = 0.25 which yields the

optimal payoff FD = 0.183. At this SPE, which falls into Situation 1, D creates a

(10, 1)-Harary network using 10 links initially and A does not attack.
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(a) τ = 0.5

(b) τ = 0.55

Figure 4.9: (a) and (b) illustrate the strategies of D and A with different τ . The
SPE under optimal resilience planning switches from Situation 2 to Situation 3
as τ changes from 0.5 to 0.55. In both (a) and (b), the shaded grey areas, i.e.,
τR ∈ [0, 0.096] ∪ [0.01, 0.154], are not feasible due to the negative value FD.



109

4.6.3 Strategic Attacks and Resilience Planning

We finally investigate the strategic attack behavior of A. In the following, the

costs of creating and compromising a communication link are selected as cD = 1/30

and cA = 1/20, respectively. The SPEs and the corresponding utilities with τ = 0.5

and τ = 0.55 are shown in Fig. 4.9. Specifically, Fig. 4.9(a) shows that the optimal

resilience planning for D at τ = 0.5 is τR = 0.37, leading to FD = 0.14. Note that

this SPE, where D constructs a tree network at phase 0 and A attacks one link at τ

with D healing the network afterward, belongs to Situation 2 in regime 2 as shown

in Table 4.5. As τ = 0.55, the best resilience planning of D is to adopt τR = 0.45 as

illustrated in Fig. 4.9(b). At this SPE, which is a case of Situation 3 in regime 2, D

creates a tree network initially and A attacks one link at τ , and D does not recover

the network. We can see that the SPE under optimal resilience planning switches

from Situation 2 to Situation 3 as τ increases. In addition, the utility of A varies

under different SPEs. Based on Lemma 4.7, for an SPE in Situation 3, the attacker

can increase its utility by choosing an appropriate τ . Thus, we study the impact of

attacking phase τ on the SPE of the game, and the result is depicted in Fig. 4.10.

Note that the utility of D is optimal under each τ in the sense that the resilience

cost RD is considered. When τ ∈ [0.4, 0.515), the SPE belongs to Situation 2, and

the optimal utilities of D and A remain as constants, where the resilience metric is

given by τR = 0.37. When τ ∈ [0.515, 0.6], the SPE switches to a case of Situation

3. In this interval, D does not recover after the attack and τR = 1−τ . Furthermore,

the optimal timing of attack is selected as τ = 0.515, leading to UA = 0.435, the

largest utility of A. The result is in consistence with Lemma 4.7, indicating that a

smaller τ yields a higher utility of A when SPE admits a form of Situation 3.

We next investigate the SPEs under the optimal resilience planning of D and
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Figure 4.10: Players’ utilities at SPE with varying τ under the optimal resilience
planning. The best timing of attack is τ = 0.515 with optimal τR = 0.37.

Figure 4.11: Players’ utilities, optimal resilience planing τR, strategic timing of
attack τ , at SPE with varying cA/cD.

the strategic timing of attack of A together over varying cost ratio cA/cD. We

fix cD = 1/30 and the ratio cA/cD varies. Figure 4.11 shows the obtained results.
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As the cost ratio cA/cD increases, the utility of A decreases monotonically. When

cA/cD ∈ [1, 2.2], the strategies of D and A does not change and the SPE belongs

to Situation 3. Since the optimal τR and τ stay the same in this interval, the

utility of D remains unchanged. When cA/cD ∈ [2.2, 2.4], the SPE switches to

Situation 2 and D heals the network after the attack. Since the recovery is agile

(τR becomes smaller), D’s utility increases and A’s utility decreases dramatically in

this interval. Furthermore, the strategic timing of attack τ varies to account for

the better recovery speed τR and the increasing cost of attack.

4.7 Summary

In this chapter, we have established a two-player three-stage dynamic game

for the CPS network protection and recovery. We have characterized the strategic

strategies of the network defender and the attacker by analyzing the subgame perfect

equilibrium (SPE) of the game. With case studies on UAV-enabled communication

networks for disaster recovery, we have observed that with an agile response to the

attack, the defender can obtain a positive utility by creating a securely connected

CPS network. Furthermore, a higher level resilience saves link resources for the

defender and yields a better payoff. In addition, a longer duration between the attack

and recovery phases induces a higher level of cyber threats to the infrastructures.

Future work would investigate dynamic games with incomplete information of the

defender on the attacking time and attack cost. Another direction is to design SPE

strategies under the scenarios that the feasible action sets of both defender and

attacker are constrained.
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Part III

Trustworthy Decision Making

over CPS Networks
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Chapter 5

Cyber Risk Management under

Bounded Rationality in IoT

Networks

5.1 Introduction

Recent years have witnessed a significant growth of urban population. As

the growth continues, cities need to become more efficient to serve the surging

population. IoT plays a central role in supporting the development of smart city.

There are several features of IoT devices need to be considered when they are

deployed. First, IoT devices come from different manufacturers, and they have

heterogeneous functionalities and security configurations and policies. No uniform

security standards are used for IoT devices as they are developed using different

system platforms for various functionalities. Moreover, due to the connections

between IoT devices, the security of one device is also dependent on the security
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of other devices to which it connects. Therefore, the heterogeneity and the in-

terconnectivity of massive heterogeneous IoT have created significant challenges

for security management. Fig. 1.4 depicts a highly connected smart community

enabled by IoT devices. Each household needs to take into account the cyber risks

coming from their connected neighbors when securing their devices.

The security management and practices of users are often viewed as the weakest

link [137]. The lack of security awareness and expertise at the user’s end cre-

ates human-induced vulnerabilities that can be easily exploited by an adversary.

Therefore, each device owner needs to allocate resources (e.g. human resources,

computing resources, investments or cognition) to secure his applications in a

decentralized way. For example, the smart building operator can spend resources on

upgrading the hardware, hiring staff members for network monitoring and forensics,

and developing tailored security solutions to the smart building. A smart home

user, on the other hand, can safely configure its network and regularly updates its

software and password of the IoT devices.

The process of decentralized security decision-making can be modeled as a

game problem. The users cannot be aware of the security policies taken by all its

connected neighbors in the massive IoT network. This is consistent with the fact

that humans with limited knowledge or cognitive resources are bounded rational,

since they cannot pay attention to all the information [53, 66]. Thus, the game

model needs to take into account the bounded rationality of players [62]. In the

game framework, we use a cognition vector representing the observation structure

of each IoT user. Specifically, a sparser cognition vector represents a user with

weaker cognition ability, and he observes a smaller number of other users’ behaviors

when deciding his strategy. Thus, the limited attention nature of users creates a
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bounded perception of cyber risks.

In the established bounded rational game model, the users need to make

security management decisions as well as design their cognition networks jointly.

In order to achieve this goal, we define a new solution concept called Gestalt Nash

equilibrium (GNE) to capture the cognitive network formation and the security

management under the bounded rationality simultaneously. The analysis of the

GNE provides a quantitative method to understand the risk of massive IoTs and

gives tractable security management policies. We further design a proximal-based

iterative algorithm to compute the GNE of the game. The GNE resulting from

the algorithm reveals several typical phenomena that match well with the real-

world observations. For example, when the network contains two groups of users,

then under the limited attention, all users will allocate their cognition resources

to the same group which demonstrates the law of partisanship. Further, in a

heterogeneous massive IoT, the equilibrium successfully identifies the set of agents

that are invariably paid attention to by other users, demonstrating the phenomenon

of attraction of the mighty. Since the framework predicts the high-level systemic risk

of the IoT network, it also can be used to inform the design of security standards

and incentive mechanisms, e.g., through contracts and cyber insurance.

5.1.1 Summary of Notations

For convenience, we summarize the notations used in this chapter in Table 5.1.

Note that notations associated with ∗ refer to the value at equilibrium. Furthermore,

notations with index k stands for its value at step k during the iterative updates.
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Table 5.1: Nomenclature of Chapter 5

N N := {1, 2, ..., N}, set of players/users

Ri
ii security investment cost coefficient of player i

Ri
ij security investment influence coefficient of player j on player i

ri unit return of security investment of player i

r r := [r1, r2, ..., rN ]

ui security investment decision of player i

u u := [u1, u2, ..., uN ]

u−i set of decisions of all players except i-th one

U set of decisions of all players

mi mi := [mi
j]j 6=i,j∈N , mi

j ∈ [0, 1], the attention network of player i

ucij ucij = mi
juj, decision of player j perceived by player i

Ji cost function of player i

J̃ i cost function of player i under bounded rationality

BRi best response of player i

Λi Λi := [Λi
jk]j 6=i,k 6=i,j∈N ,k∈N , Λi

jk := 1
Riii
Ri
ijR

i
ikujuk

eN−1 an N − 1-dimensional column vector with all one entries

αi weighting factor quantifying the unit cost of player i’s cognition

βi total number of links in the cognitive network of player i

|| · ||1 standard L-1 norm

|| · || standard L-2 norm

ιC indicator function on set C

prox· proximal operator

5.2 Problem Formulation

In this section, we formulate a problem involving strategic security decision

making and cognitive network formation of players in the IoT networks.
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5.2.1 Security Management Game over Networks

In an IoT user network including a set N of nodes1, where N := {1, 2, ..., N},

each node can be seen as a player that makes strategic decisions on the security

management to secure their IoT devices. For instance, in Fig. 1.4, each smart

home is a player securing their smart things to mitigate the cyber threats. We

define U := {u1, ..., uN} by the decision profile of all the players. Specifically, ui is

a one-dimensional decision variable representing player i’s security management

effort. For convenience, we denote u−i := U \{ui}. The objective of player i, i ∈ N ,

is to minimize his security risk strategically by taking the costly action ui. We

define by F i
1 : R+ → R+ the cost of security management effort of player i which is

an increasing function of ui. The corresponding benefit of security management

is captured by a function F i
2 : R+ → R+. Intuitively, a larger ui yields a higher

return, and hence F i
2 is monotonically increasing. Due to the interconnections in

the IoT, the risk of player i is also dependent on his connected users. Then, we use

a function F i
3 : R+ × RN−1

+ → R+ to represent the influence of player i’s connected

users on his security. The coupling between players in the IoT is in a strategic

complement fashion with respect to the security decisions. More specifically, a

larger security investment uj of player j, a connected node of player i, decreases

the cyber risks of player i as well. Therefore, the cost function of player i can be

expressed as the following form:

J i(ui, u−i) = F i
1(ui)− F i

2(ui)− F i
3(ui, u−i), (5.1)

1The terms of node, agent and player refer to the user in the IoT, and they are used inter-
changeably.
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where J i : R+ × RN−1
+ → R. To facilitate the analysis and design of security risk

management strategies, we specify some appropriate forms of functions in (5.1).

In the following, we focus on player i taking the quadratic form: F i
1(ui) = 1

2
Ri
iiu

2
i ,

F i
2(ui) = riui, and F i

3(ui, u−i) =
∑

j 6=i,j∈N R
i
ijuiuj. Thus, (5.1) can be detailed as

J i(ui, u−i) =
1

2
Ri
iiu

2
i − riui −

∑
j 6=i,j∈N

Ri
ijuiuj, (5.2)

where Ri
ii > 0, ri > 0, ∀i, and Ri

ij ≥ 0, ∀j 6= i, i ∈ N . Note that parameters Ri
ij,

i, j ∈ N , represent the risk dependence network of player i in the IoT, and the value

of Ri
ij indicates the strength of risk influence of player j on player i which is given

as a prior. The first term 1
2
Ri
iiu

2
i in (5.2) is the cost of security management with an

increasing marginal price. The second term riui denotes the corresponding payoff

of cyber risk reduction. Then, the first two terms capture the fact that increasing

a certain level of cyber security becomes more difficult in a secure network than

a less secure one. The last term
∑N

j=1,j 6=iR
i
ijuiuj is the aggregated security risk

effect from connected users of player i. Specifically, the structure of F i
3 in ui and uj

indicates that the risk measure J i of player i decreases linearly with respect to user

j’s action. Hence, in the established model, larger investment from a user helps

reduce cyber risk influence in a linear way. We have following assumption on the

security influence parameters.

Assumption 5.1. Ri
ii >

∑
j 6=i,j∈N R

i
ij, ∀i ∈ N .

Assumption 5.1 has a natural interpretation which indicates that the security of

a user is mainly determined by his own strategy rather than other users’ decisions

in the IoT network. Moreover, based on the heterogeneous influence networks

characterized by Assumption 5.1, each node designs its own security investment
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strategy which enables the decentralized decision-making. The strategies of nodes

are interdependent due to the coupling between their cost functions shown in (5.2).

Through the first order optimality condition (FOC), we obtain

Ri
iiui −

∑
j 6=i,j∈N

Ri
ijuj − ri = 0, ∀i ∈ N . (5.3)

Putting (5.3) in a matrix form yields



R1
11 −R1

12 · · · −R1
1N

−R2
21 R2

22 · · · −R2
2N

...
...

. . .
...

−RN
N1 −RN

N2 · · · RN
NN





u1

u2

...

uN


=



r1

r2

...

rN


⇔ Ru = r, (5.4)

where r := [ri]i∈N , u := [ui]i∈N .

For convenience, we denote this security management game by G. One solution

concept of game G is Nash equilibrium (NE) which is defined as follows.

Definition 5.1 (Nash Equilibrium of Game G [18]). The strategy profile u∗ =

[u∗i ]i∈N constitutes a Nash equilibrium of game G if J i(ui, u
∗
−i) ≥ J i(u∗i , u

∗
−i), ∀i ∈

N , ∀ui ∈ Ui.

The NE of game G yields strategic security management policies of players

under the condition that they can perceive all the cyber risks in the IoT network.

5.2.2 Bounded Rational Security Management Game

In reality, the users in IoT are connected with numerous other agents. For

example, a single household can be connected with a number of other houses in
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terms of various types of IoT products in the smart communities. Therefore, when

making security management strategies, each user may not be capable to observe

all its connected neighbors. Instead, a user can only respond to a selected number

of other players’ decisions. Then, this bounded rational response mechanism creates

a cognitive network formation process for the players in the network. Specifically,

player i’s irrationality is captured by a vector mi := [mi
j]j 6=i,j∈N , mi

j ∈ [0, 1], which

stands for the attention network that player i builds. When mi
j = 0, user i pays

no attention to user j’s behavior; when mi
j = 1, user i observes the true value

of security management uj of user j. The value that mi
j admits between 0 and

1 can be interpreted as the trustfulness of user i on the perceived uj. Another

interpretation of mi
j can be the probability that user i observes the behavior of

user j at each time instance on the security investment over a long period. Hence,

the decision of player j perceived by player i becomes ucij = mi
juj. Then, player i

minimizes the modified cost function with bounded rationality defined as:

J̃ i(ui, u
ci
−i,m

i) =
1

2
Ri
iiu

2
i − riui −

∑
j 6=i,j∈N

mi
jR

i
ijuiuj

=
1

2
Ri
iiu

2
i − riui −

∑
j 6=i,j∈N

Ri
ijuiu

ci
j , (5.5)

where J̃ i : R+ × RN−1
+ × [0, 1]N−1 → R.

The FOC of (5.5) gives Ri
iiui −

∑
j 6=i,j∈N R

i
iju

ci
j − ri = 0, ∀i ∈ N , which is
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equivalent to



R1
11 −m1

2R
1
12 · · · −m1

NR
1
1N

−m2
1R

2
21 R2

22 · · · −m2
NR

2
2N

...
...

. . .
...

−mN
1 R

N
N1 −mN

2 R
N
N2 · · · RN

NN





u1

u2

...

uN


=



r1

r2

...

rN


⇔ Rsu = r. (5.6)

The bounded rational best-response of player i, i ∈ N , then becomes

ui = BRi(uci−i) =
1

Ri
ii

( ∑
j 6=i,j∈N

Ri
iju

ci
j + ri

)
, (5.7)

where ucij = mi
juj.

We denote the security management game of players with limited attention

by G̃. Comparing with the solution concept NE of game G, the one of game G̃ is

generalized to bounded rational Nash equilibrium (BRNE). The formal definition

of BRNE is as follows.

Definition 5.2 (Bounded Rational Nash Equilibrium of Game G̃). With given

cognition vectors mi, ∀i ∈ N , the strategy profile u∗ = [u∗i ]i∈N constitutes a BRNE

of game G̃ if J̃ i(ui, u
∗
−i,m

i) ≥ J̃ i(u∗i , u
∗
−i,m

i), ∀i ∈ N , ∀ui ∈ Ui.

Note that the cognitive network each user built has an impact on the BRNE of

game G̃. Hence, how the users determine the cognition vector mi, i ∈ N , becomes a

critical issue. In the ensuing section, we introduce the cognitive network formation

of players in the IoT.
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5.2.3 Cognitive Network Formation

Due to the massive connections in IoT, each user builds a sparse cognitive

network containing the agents to observe. To this end, the real cost of user i by

taking the bounded rationality into account becomes

J i(BRi(uci−i), u−i) =
1

2Ri
ii

( ∑
j 6=i,j∈N

Ri
iju

ci
j + ri

)2

−
∑

k 6=i,k∈N

[
1

Ri
ii

Ri
ikuk

( ∑
j 6=i,j∈N

Ri
iju

ci
j + ri

)]
− ri
Ri
ii

( ∑
j 6=i,j∈N

Ri
iju

ci
j + ri

)

=
1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

1

Ri
ii

Ri
ijR

i
iku

ci
j u

ci
k −

1

2Ri
ii

(ri)
2

−
∑

k 6=i,k∈N

( ∑
j 6=i,j∈N

ucij R
i
ij

)
1

Ri
ii

Ri
ikuk −

∑
k 6=i,k∈N

1

Ri
ii

riR
i
ikuk.

Incorporating the cognition vector mi into the real cost of player i further yields

J i(BRi(uci−i), u−i) =
1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

mi
j

1

Ri
ii

Ri
ijR

i
ikm

i
kujuk −

1

2Ri
ii

(ri)
2

−
∑

k 6=i,k∈N

∑
j 6=i,j∈N

mi
j

1

Ri
ii

Ri
ijR

i
ikujuk −

∑
k 6=i,k∈N

1

Ri
ii

riR
i
ikuk. (5.8)

Recall that each user aims to minimize the security risk based on the risks he

perceives. Thus, by considering the real cost induced by the bounded rationality

constraint, the strategic cognitive network formation problem of player i can be
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formulated as

mi∗ = arg min
mij ,j 6=i,j∈N

J i(BRi(uci−i), u−i) + αi‖mi‖1

= arg min
mij ,j 6=i,j∈N

1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

1

Ri
ii

Ri
ijR

i
ikujukm

i
jm

i
k

−
∑

j 6=i,j∈N

∑
k 6=i,k∈N

1

Ri
ii

Ri
ijR

i
ikukujm

i
j + αi‖mi‖1

= arg min
mij ,j 6=i,j∈N

1

2
miTΛimi − eTN−1Λimi + αi‖mi‖1,

where Λi := [Λi
jk]j 6=i,k 6=i,j∈N ,k∈N , Λi

jk = 1
Riii
Ri
ijR

i
ikujuk, eN−1 is an N−1-dimensional

column vector with all one entries, and αi is a weighting factor capturing the unit

cost of cognition of player i and it can be tuned to match with experimental data.

The term ‖mi‖1 is a convex relaxed version of ‖mi‖0 which approximately maintains

the sparse property of player i’s cognitive network [13, 28]. The integrated term

αi‖mi‖1 can be interpreted as the cognitive cost of user i.

Therefore, for player i, we need to solve the following constrained optimization

problem:

min
mij ,j 6=i,j∈N

1

2
miTΛimi − eTN−1Λimi + αi‖mi‖1

s.t. 0 ≤ mi
j ≤ 1, j 6= i, j ∈ N , (Risk perception), (5.9)

where ‘T′ denotes the transpose operator; and the constraints mi
j ∈ [0, 1], ∀j 6= i,

indicate the risk perception behavior of user i.

The number of cognitive links that player i can form is generally a positive

integer, i.e., ‖mi‖1 = βi ∈ N+. Note that βi here and αi in (5.9) have the

same interpretation which both quantify the cognition ability of player i. Then,
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by choosing αi strategically, the problem in (5.9) is equivalent to the following

problem:

min
mij ,j 6=i,j∈N

1

2
miTΛimi − eTN−1Λimi

s.t. 0 ≤ mi
j ≤ 1, j 6= i, j ∈ N , (Risk perception),

‖mi‖1 = βi, (Limited attention), (5.10)

where βi ∈ N+ ≤ N − 1 is the total number of links that player i can form in his

cognitive network, quantifying his limited attention. Simulation studies in Section

5.5 reflect that considering ‖mi‖1 = βi yields sparser cognitive networks. Note that

we still solve (5.9) by selecting a proper αi which yields equivalent (5.9) and (5.10).

5.2.4 Gestalt Nash Equilibrium

The formulated security management under bounded rationality problem boasts

a games-of-games structure. The users make decisions strategically in the IoT

network as well as form their cognitive networks selfishly. The security management

game and cognitive network formation game are interdependent. Therefore, the

cognitive and IoT user layers shown in Fig. 5.1 constitute a network-of-networks

framework. In this chapter, we aim to design an integrated algorithm to design the

cognitive networks and determine the security risk management decisions of users

in a holistic manner.

To this end, we present the solution concept, Gestalt Nash equilibrium, of the

bounded rational security risk management game as follows.

Definition 5.3 (Gestalt Nash Equilibrium). The Gestalt Nash equilibrium (GNE)

of the security risk management game under bounded rationality is a profile (mi∗, u∗i ),
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1

Cognitive networks

IoT user networks

G1

2 3

4

5

1

Figure 5.1: IoT user and cognitive network-of-networks. Users make strategic
security management decisions in the IoT network as well as determine their
cognitive networks. The security management game in layer G2 and the cognitive
network formation game in layer G1 are interdependent which create a games-of-
games framework.

∀i ∈ N , that satisfies

J̃ i(u∗i , u
∗
−i,m

i∗) ≤ J̃ i(ui, u
∗
−i,m

i), ∀ui ∈ Ui, ∀mi ∈ [0, 1]N−1.

At the GNE, all the players in the network do not change their action ui and

cognition vector mi, ∀i ∈ N , simultaneously.

Remark: The strategic security management profile u∗ = [u∗i ]i∈N at GNE is also

a BRNE.

In the following, we aim to analyze the GNE of the game and compute it by

designing algorithms.

5.3 Problem Analysis

We first analyze the convergence of the bounded rational best-response dynamics

of players in Section 5.2.2. Then, we quantify the risk of bounded perception due to
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limited attention of players. We further reformulate the cognitive network formation

problem presented in Section 5.2.3.

5.3.1 Bounded Rational Best Response Dynamics

Based on Section 5.2.2, the bounded rational best-response dynamics of player

i under cognitive network mi, i ∈ N , can be written as

ui,k+1 = BRi(uci−i,k) =
1

Ri
ii

( ∑
j 6=i,j∈N

Ri
iju

ci
j,k + ri

)
, (5.11)

where ucij,k = mi
juj,k and k denotes the iteration index. Then, we obtain the following

convergence result of security management strategy updates of users under given

cognition networks.

Lemma 5.1. Under Assumption 5.1, the sparse best-response dynamics (5.11) for

all players converge to a unique BRNE.

Proof. In the sparse cognition networks, Ri
ii >

∑
j 6=i,j∈N m

i
jR

i
ij, ∀i ∈ N , since

mi
j ∈ [0, 1]. Then, Rs defined in (5.6) is strictly diagonal dominant by rows, and

u admits a unique solution. In addition, both Gauss-Seidel and Jacobi types of

best-response dynamics (5.11) converges [122].

Note that Assumption 5.1 is a sufficient condition. In some cases, the best-

response dynamics (5.11) may still converge when Assumption 5.1 does not hold.

We focus on the scenarios under Assumption 5.1 which exhibit a natural security

dependence interpretation.
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5.3.2 Risk of Bounded Perception

When making security strategies in the IoT, the risk of bounded perception

(RBP) of users due to irrationality/limited attention is defined as follows.

Definition 5.4 (RBP). With the cognition vector mi, the RBP of player i, i ∈ N ,

is defined as

Li(m
i, u−i) = J i(BRi(uci−i), u−i)− J i(BRi(u−i), u−i), (5.12)

where Li :Mi × U−i → R.

Note that RBP is defined over the real-world cost functions (5.2), quantifying

the security loss of the users due to limited attention. We further present the

following lemma.

Lemma 5.2. Under the bounded rational model, each user in the network has a

degraded security level comparing with the one obtained from the model containing

fully rational users. The RBP of player i, i ∈ N , with bounded rationality is

Li(m
i, u−i) =

1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

(1−mi
j)(1−mi

k)
1

Ri
ii

Ri
jiR

i
ikujuk.

Proof. Based on (5.8), we can compute the RBP of node i as

Li(m
i, u−i) = J i(BRi(uci−i), u−i)− J i(BRi(u−i), u−i)

=
1

2

∑
j 6=i
j∈N

∑
k 6=i
k∈N

mi
j

Ri
ii

Ri
jiR

i
ikm

i
kujuk −

1

2

∑
k 6=i
k∈N

∑
j 6=i
j∈N

mi
j

Ri
ii

Ri
jiR

i
ikujuk

+
1

2

∑
j 6=i
j∈N

∑
k 6=i
k∈N

1

Ri
ii

Ri
jiR

i
ikujuk −

1

2

∑
k 6=i
k∈N

∑
j 6=i
j∈N

mi
j

Ri
ii

Ri
jiR

i
ikujuk.
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Further, we can rewrite
∑

j 6=i,j∈N
∑

k 6=i,k∈N
1
Riii
Ri
jiR

i
ikujuk =

∑
j 6=i,j∈N

∑
k 6=i,k∈N m

i
j

1
Riii
Ri
jiR

i
ikujuk +

∑
j 6=i,j∈N (1−mi

j)
∑

k 6=i,k∈N (1−mi
k)

1
Riii
Ri
jiR

i
ikujuk +

∑
j 6=i,j∈N (1−

mi
j)
∑

k 6=i,k∈N m
i
k

1
Riii
Ri
jiR

i
ikujuk. Therefore, we obtain

Li(m
i, u−i) =

1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

mi
j

1

Ri
ii

Ri
jiR

i
ikm

i
kujuk

+
1

2

∑
j 6=i,j∈N

(1−mi
j)

∑
k 6=i,k∈N

mi
k

1

Ri
ii

Ri
jiR

i
ikujuk

− 1

2

∑
k 6=i,k∈N

∑
j 6=i,j∈N

mi
j

1

Ri
ii

Ri
jiR

i
ikujuk

+
1

2

∑
j 6=i,j∈N

(1−mi
j)

∑
k 6=i,k∈N

(1−mi
k)

1

Ri
ii

Ri
jiR

i
ikujuk

=
1

2

∑
j 6=i,j∈N

∑
k 6=i,k∈N

(1−mi
j)(1−mi

k)
1

Ri
ii

Ri
jiR

i
ikujuk.

Remark: Note that the RBP of each player is nonnegative from Lemma 5.2,

since the coefficients and security investments are nonnegative and the cognition

variable admits a value between 0 and 1. Intuitively, if player i is able to perceive

all the cyber risks in the network, i.e., mi
j = 1, ∀j 6= i, j ∈ N , then the RBP is

Li(m
i, u−i) = 0. In this scenario, the bounded rational model degenerates to the

fully rational one. This indicates that, with more observations, the IoT users can

design security management strategies better to lower their security risks. This

fact also leads to the conclusion that more information (better cognitive ability) is

beneficial for the users in our security management game. The result in Lemma 5.2

is further illustrated and corroborated through case studies in Section 5.5.
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5.3.3 Problem Reformulation

We can rewrite the constrained optimization program (5.9) as

min
mij ,j 6=i,j∈N

Qi(m
i) :=

1

2
miTΛimi − eTN−1Λimi + αi‖mi‖1 + ιC(mi), (5.13)

where Qi : [0, 1]N−1 → R ∪ {+∞}, C := {mi|0 ≤ mi
j ≤ 1, j 6= i, j ∈ N}, and ιC is

an indicator function, i.e.,

ιC(x) =


0, if x ∈ C,

+∞, otherwise.

(5.14)

For convenience, we decompose the function Qi into three parts and define

f i1(mi) =
1

2
miTΛimi − eTN−1Λimi, (Security loss),

f i2(mi) = αi‖mi‖1, (Cognition cost),

f i3(mi) = ιC(mi), (Feasible risk perception), (5.15)

where f i1 : RN−1 → R, f i2 : RN−1 → [0,+∞) and f i3 : RN−1 → {0,+∞}. Specifically,

for user i ∈ N , f i1 quantifies a modified security loss; f i2 captures the cognition cost;

and f i3 ensures a feasible risk perception over the IoT.

The optimization problem (5.13) is quite challenging to solve. First, note that

the convexity of f i1 depends on the characteristics of matrix Λi. Specially, when Λi

is positive definite, then f i1 is convex in mi. When Λi is not definite, then solving

the quadratic program is an NP hard problem. Second, the l1 norm-based function

f i2 and the indicator function f i3 are nonsmooth and not differentiable, though they

are convex. The traditional gradient-based optimization tools are not sufficient to
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deal with this type of optimization problem in (5.13) [113]. To this end, we aim to

design a proximal algorithm to solve this problem.

5.4 Algorithm for Computing GNE

In this section, our goal is to design an algorithm to solve problem (5.13). We

further characterize the closed form solutions for a special case with homogeneous

agents for comparison during case studies in Section 5.5. In addition, we present

an integrated algorithm that computes the GNE of the bounded rational security

management game.

5.4.1 Basics of Proximal Operator

To address (5.13), we leverage the tools from proximal operator theory. We first

present the definition of proximal operator as follows.

Definition 5.5 (Proximal Operator [19]). Let g ∈ Γ0, where Γ0 denotes the set of

proper lower semicontinuous convex functions. The proximal mapping associated to

g is defined as

proxλg(x) = arg min
l

g(l) +
1

2λ
‖l − x‖2. (5.16)

Note that the proximal mapping is unique, since the optimization problem in

(5.16) is convex. Specifically, for function f i2 in (5.15), we have

[
proxλf i2(x)

]
j

=


xj − λαi, xj ≥ λαi,

0, |xj| < λαi,

xj + λαi, xj ≤ −λαi,
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for j 6= i, j ∈ N , which can be put in a compact form as [116]

proxλf i2(x) = (x− λαieN−1)+ − (−x− λαieN−1)+. (5.17)

In addition, proxλf i3(x) = projC(x), C = [0, 1]N−1, which is equivalent to

[
proxλf i3(x)

]
j

= [projC(x)]j =


1, if xj > 1,

xj, if 0 ≤ xj ≤ 1,

0, if xj < 0,

where “proj” denotes the projection operator.

The following lemma characterizes the aggregated proximal operator of functions

f i2 and f i3 which is useful in designing the proximal algorithm.

Lemma 5.3. Functions f i2 and f i3 defined in (5.15), ∀i ∈ N , satisfy the property:

proxλ(f i2+f i3) = projC ◦ proxλf i2.

Proof. We proof for single dimensional case, i.e., C = [0, 1], and the analysis can be

generalized for higher dimensional cases. By definition, we obtain proxλ(f i2+f i3)(x) =

arg minl f
i
2(l) + f i3(l) + 1

2λ
‖l − x‖2 = arg minl∈C f i2(l) + 1

2λ
‖l − x‖2. Let l∗ =

argl

(
∂(f i2(l)+ 1

2λ
‖l−x‖2)

∂x
= 0

)
= proxλf i2(x). In addition, function f i2(l) + 1

2λ
‖l − x‖2

is decreasing in l < l∗ and increasing in l ≥ l∗. Remind that C = [0, 1] is a closed

set. Hence, when 0 ≤ l∗ ≤ 1, proxλ(f i2+f i3)(x) = l∗; when l < l∗, proxλ(f i2+f i3)(x) = 0;

and when l > l∗, proxλ(f i2+f i3)(x) = 1. In all three cases, we obtain proxλ(f i2+f i3)(x) =

projC(l∗) = projC(proxλf i2(x)).

Lemma 5.3 indicates that we can deal with the convex terms of cognitive cost

and feasible risk perception jointly. The security loss term f i1 is addressed in the
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ensuing section.

5.4.2 Design of Proximal Algorithm

Recall that f i2 and f i3, ∀i ∈ N , are nonsmooth and not differentiable. To

characterize the optimal cognition vector in f i2 and f i3, we first present the definition

of subdifferential of a function which can be nonconvex and nonsmooth as follows.

Definition 5.6 (Subdifferential [121]). Let f : Rn → R be a proper and lower

semicontinuous function.

1. The domain of f is denoted by dom f := {x ∈ Rn : f(x) < +∞}.

2. For x ∈ dom f , the Fréchet subdifferential of f at x is the set of vectors

p ∈ Rn, denoted by ∂̂f(x), that satisfy

lim inf
y 6=x,y→x

1

‖y − x‖
[f(y)− f(x)− 〈p, y − x〉] ≥ 0.

3. The limiting-subdifferential (or subdifferential) of f at x ∈ dom f , denoted

by ∂f(x), is defined by

∂f(x) :=
{
p ∈ Rn : ∃xn → x, f(xn)→ f(x), pk ∈ ∂̂f(xn)→ p

}
.

Remark: Based on the subifferential, a necessary condition for x ∈ Rn being a

minimizer of f is

∂f(x) 3 0. (5.18)

Note that the points satisfying (5.18) are called critical points of f . Our goal is to

find a critical point m̄i ∈ dom Qi that can be characterized by the necessary FOC:
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0 ∈ ∂Qi(m̄
i).

Note that f i1 is continuously differentialble with Lipschitz continuous gradient,

i.e.,

‖∇f i1(x)−∇f i1(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ RN−1,

where Li is the Lipschitz constant of f i1. Specifically, ∇f i1(mi) = Λimi − ΛieN−1,

which further yields

‖∇f i1(x)−∇f i1(y)‖ = ‖Λi(x− y)‖ ≤ Li‖x− y‖, ∀x, y ∈ RN−1. (5.19)

The main steps in solving (5.13) for a general Λi of user i are designed as follows:

yik = xik +
tik−1

tik
(zik − xik) +

tik−1 − 1

tik
(xik − xik−1), (5.20)

zik+1 = projC

(
proxλiyf i2(y

i
k − λiy∇f i1(yik))

)
, (5.21)

vik+1 = projC

(
proxλixf i2(x

i
k − λix∇f i1(xik))

)
, (5.22)

tik+1 =

(
1 +

√
4(tik)

2 + 1

)
/2, (5.23)

xik+1 =


zik+1, if Qi(z

i
k+1) ≤ Qi(v

i
k+1),

vik+1, Otherwise,

(5.24)

where the step constants λix and λiy satisfy 0 < λix < 1/Li and 0 < λiy < 1/Li,

respectively. If the algorithm converges, the values of xik, y
i
k, z

i
k and vik are the

same which give the optimal cognition vector mi.

Remark: Note that (5.22) serves as a monitor of the update in (5.21). Together

with the condition in (5.24), each player updates their cognitive network when

there is a sufficient decrease of the security management cost.
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Before presenting the convergence results of the algorithm (5.20)-(5.24), we first

characterize a critical property of function Qi(m
i) defined in (5.13).

Definition 5.7 (Kurdyka- Lojasiewicz (KL) Property [6]). A function f : Rn →

(−∞,+∞] has the KL property at x∗ ∈ dom ∂f := {x ∈ Rn : ∂f(x) 6= ∅} if there

exists η ∈ (0,+∞], a neighborhood U of x∗, and a desingularising function φ ∈ Φη,

such that ∀x ∈ U∩{x ∈ Rn : f(x∗) < f(x) < f(x∗)+η}, the following KL inequality

holds,

φ′(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1, (5.25)

where Φη includes a class of function φ : [0, η)→ R+ satisfying: (1) φ is concave

and φ ∈ C1((0, η)); (2) φ is continuous at 0 with φ(0) = 0; and (3) φ′(x) > 0, ∀x ∈

(0, η). In addition, dist(0, ∂f(x)) := inf {‖z‖ : z ∈ ∂f(x)} .

Note that a proper lower semicontinuous function f having the KL property at

each point of dom ∂f is called a KL function. KL inequality (5.25) ensures that,

by choosing a proper desingularising function φ, we can reparameterize the values

of function f near its critical points to avoid flatness. Thus, φ has an impact on

the convergence rate of the designed algorithm which will be presented in Theorem

5.1. KL property is general in functions. Notably, the semi-algebraic functions

satisfy the KL property [6]. Some examples include real polynomial functions,

indicator functions of semi-algebraic sets and ‖ · ‖p with p ≥ 0. Furthermore, the

semi-algebraic property preserves under composition, finite sums and products of

semi-algebraic functions [23].

Lemma 5.4. Functions f i1, f
i
2 and f i3 in (5.15) satisfy the KL property, and thus

Qi in (5.13) is a KL function. In addition, the desingularising function φ(u) can

be chosen as φ(u) = κ
θ
uθ for some θ ∈ (0, 1

2
] and κ > 0.
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Proof. We know that f i1, f
i
2 and f i3 are semi-algebraic functions, and thus Qi satisfies

the KL property [6]. Remind that when mi /∈ C := {mi|0 ≤ mi
j ≤ 1, j 6= i, j ∈ N},

Qi(m
i) → +∞. Based on Definition 5.6, we obtain dom ∂Qi = C. Therefore,

Qi(m
i) is analytic over dom ∂Qi. In addition, the desingularising function of

real-analytical functions satisfying inequality (5.25) can be chosen as φ(u) = u1−δ,

where δ ∈ [1
2
, 1) [23].

Based on Lemma 5.4, we present the convergence result of the designed algorithm

(5.20)-(5.24) in Theorem 5.1.

Theorem 5.1. The algorithm given by (5.20)-(5.24) converges to a critical point

with rates related to the parameters κ and θ, where κ and θ are defined in Lemma

5.4. Specifically, there exists a k0 such that ∀k > k0,

Qi(xk)−Q∗i ≤
(

κ

(k − k0)(1− 2θ)d2

) 1
1−2θ

,

where Q∗i is the function value achieved at critical points of {xk}, d2 = min{ 1
2d1κ

,

σ(Qi(v0)−Q∗i )2θ−1}, d1 = 2α( 1
λx

+ L)2/(1− 2α), and σ = κ
1−2θ

(
2

2θ−1
2θ−2 − 1

)
.

Proof. The main idea of the proof follows [60] with several differences. Especially

the imposed conditions for showing convergence in [60] are different. In addition,

our algorithm contains projections and an auxiliary parameter vk+1 during up-

dates. First, based on Definition 5.5, vk+1 = projC

(
proxλxf i2(xk − λx∇f

i
1(xk))

)
=

arg minx∈C 〈∇f i1(xk), x− xk〉+ 1
2λx
‖x− xk‖2 + f i2(x). Then, 〈∇f i1(xk), vk+1 − xk〉+

1
2λx
‖vk+1 − xk‖2 + f i2(vk+1) ≤ f i2(xk). Based on the Lipschitz continuous condition
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of f i1, we obtain

Qi(vk+1) ≤ f i2(vk+1) + f i1(xk) + f i3(xk) + 〈∇f i1(xk), vk+1 − xk〉+
Li
2
‖vk+1 − xk‖2

≤ f i2(xk)− 〈∇f i1(xk), vk+1 − xk〉 −
1

2λx
‖vk+1 − xk‖2

+ f i1(xk) + f i3(xk) + 〈∇f i1(xk), vk+1 − xk〉+
Li
2
‖vk+1 − xk‖2

= Q(xk)−
(

1

2λx
− Li

2

)
‖vk+1 − xk‖2.

(5.26)

When Qi(zk+1) ≤ Qi(vk+1), xk+1 = zk+1, Qi(xk+1) = Qi(zk+1) ≤ Qi(vk+1), and

when Qi(zk+1) > Qi(vk+1), xk+1 = vk+1, Qi(xk+1) = Qi(zk+1). Hence,

Qi(xk+1) ≤ Qi(vk+1) ≤ Qi(xk). (5.27)

Based on (5.26) and (5.27),

Qi(vk+1) ≤ Qi(vk)−
(

1

2λx
− Li

2

)
‖vk+1 − xk‖2. (5.28)

In addition,

dist(0, ∂Qi(vk+1)) ≤
(

1

λx
+ Li

)
‖vk+1 − xk‖. (5.29)

Furthermore, {xk} and {vk} have the same accumulation points. Let Ψ be the

set containing all the accumulation points of {xk}. Note that Qi admits the same

value Q∗i at all accumulation points in Ψ due to the non-increasing Qi(vk). Then,

Qi(vk) ≥ Q∗i and Qi(vk) → Q∗i . If there exists an n such that Qi(vn) = Q∗i ,

the algorithm converges. If Qi(vk) ≥ Q∗i , ∀k, then there exists a k̃1 such that

Qi(vk) < Q∗i + η for k > k̃1. Since dist(vk,Ψ) → 0, there exists a k̃2 such that
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dist(vk,Ψ) < ε for k > k̃2. Thus, when k > k0 = max{k̃1, k̃2}, vk ∈ {v, dist(vk,Ψ) <

ε} ∩ {Q∗i < Qi(v) < Q∗i + η}. Based on the KL property in Definition 5.7, there

exists a concave function φ such that

φ′(Qi(vk)−Q∗i )dist(0, ∂Qi(vk)) ≥ 1. (5.30)

Define rk := Qi(vk)−Q∗i , and we further assume that rk > 0, ∀k. Otherwise, the

algorithm converges in finite steps by definition. Then, ∀k > k0,

1 ≤ φ′(Qi(vk)−Q∗i )dist(0, ∂Qi(vk)) ≤
(
φ′(rk)

(
1

λx
+ Li

)
‖vk − xk−1‖

)2

≤ (φ′(rk))
2

(
1

λx
+ Li

)2
Qi(vk−1)−Qi(vk)

1
2λx
− Li

2

= d1(φ′(rk))
2(rk−1 − rk), (5.31)

where d1 = 2α( 1
λx

+ L)2/(1− 2α). Besides, φ admits the form φ(u) = κ
θ
uθ. Then,

(5.31) can be rewritten as

1 ≤ d1κ
2r

2(θ−1)
k (rk−1 − rk). (5.32)

Lemma 5.4 indicates that 0 < θ ≤ 1
2
, then, we have −1 ≤ θ − 1 < −1

2
and

−1 < 2θ − 1 < 0. When rk−1 > rk, we obtain r
2(θ−1)
k−1 < r

2(θ−1)
k and r2θ−1

0 < r2θ−1
1 <

... < r2θ−1
k . In addition, define ζ(u) = κ

1−2θ
u2θ−1, and then ζ ′(u) = −κu2θ−2. When

r
2(θ−1)
k ≤ 2r

2(θ−1)
k−1 , then ∀k > k0, ζ(rk)−ζ(rk−1) = κ

∫ rk
rk
u2(θ−1)du ≥ κr

2(θ−1)
k−1 (rk−1−

rk) ≥ 1
2
κr

2(θ−1)
k−1 (rk−1−rk) ≥ 1

2κd1
. When r

2(θ−1)
k > 2r

2(θ−1)
k−1 , then r2θ−1

k > 2
2θ−1
2(θ−1) r2θ−1

k−1 ,

and ζ(rk)− ζ(rk−1) = κ
1−2θ

(r2θ−1
k − r2θ−1

k−1 ) > κ
1−2θ

(2
2θ−1
2(θ−1) − 1)r2θ−1

k−1 > κ
1−2θ

(2
2θ−1
2(θ−1) −

1)r2θ−1
0 . Let σ = κ

1−2θ
(2

2θ−1
2(θ−1) − 1) and d2 = min{ 1

2κd1
, σr2θ−1

0 }, then ∀k > k0,

ζ(rk) − ζ(rk−1) ≥ d2, and ζ(rk) ≥ ζ(rk) − ζ(rk0) ≥
∑k

t=k0+1 ζ(rt) − ζ(rt−1) ≥

(k − k0)d2. Hence, r2θ−1
k ≥ d2

κ
(k − k0)(1 − 2θ), leading to rk ≤ κ

d2(k−k0)(1−2θ)

1
1−2θ .
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Therefore, we obtain Qi(xk)−Q∗i ≤ Qi(vk)−Q∗i = rk =
(

κ
d2(k−k0)(1−2θ)

) 1
1−2θ

.

For a special case where f i1 is convex, the following simplified steps (5.33)-(5.36)

can be adopted to accelerate the computation. The monitoring update step vk+1

is omited due to the convexity of f i1. This algorithm is slightly different with the

one in [20] in terms of the projection step. Since Qi is convex, then algorithm

(5.33)-(5.36) converges to a unique optimal solution.

yik = xik +
tik−1

tik
(zik − xik) +

tik−1 − 1

tik
(xik − xik−1), (5.33)

zik+1 = projC

(
proxλiyf i2(y

i
k − λiy∇f i1(yik))

)
, (5.34)

tik+1 =

(
1 +

√
4(tik)

2 + 1

)
/2, (5.35)

xik+1 =


zik+1, if Qi(z

i
k+1) ≤ Qi(x

i
k),

xik, Otherwise.

(5.36)

Similar to (5.20)-(5.24), when the algorithm (5.33)-(5.36) converges, the values of

xik, y
i
k and zik are the same which give the optimal cognition vector mi.

Homogeneous Users Case: When the agents in the IoT network are homogeneous,

i.e., Ri
ii = Rj

jj, R
i
ij = Rj

ji, ri = rj = r, βi = βj = β ≤ N − 1, ∀i, j ∈ N , we can

characterize the closed form solutions of decisions ui and mi, ∀i ∈ N . Specifically,

we obtain, ∀i ∈ N ,

mi∗
j =

β

N − 1
, ∀j 6= i, j ∈ N ,

u∗i =
r

R1 − βR2

, (5.37)

where R1 = Ri
ii and R2 = Ri

jk for j 6= i and k 6= i. The results indicate that, at
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Algorithm 5.1 Cognitive Network Formation for Player i

1. Input f i1, f i2 and C = [0, 1]N−1

2. Initialize parameters zi0, xi0, xi1, ti0, ti1, λix and λiy

3. for k = 1, 2, ... do

4. if f i1 is convex

5. Update yik, z
i
k+1, vik+1, tik+1 and xik+1 through (5.33)-(5.36)

6. else

7. Update yik, z
i
k+1, vik+1, tik+1 and xik+1 through (5.20)-(5.24)

8. end

9. end for

10. Return mi = xik

GNE, the cognitive network that each user i forms, i ∈ N , is symmetric, i.e., the

allocated attention to other users j 6= i by user i is the same. In addition, with a

larger β, the users spend more effort on the security management at GNE. This

can be interpreted as follows: with a better perception of cyber risks in the IoT,

the users becomes better informed of the risks and make best effort to reduce the

security loss.

5.4.3 Integrated Algorithm and Discussions

For clarity, we summarize the combined algorithm including the strategic security

decision-makings of players in the IoT networks and their corresponding cognitive

network formations together in Algorithm 5.2. The integrated algorithm exhibits

an alternating pattern between the best-response of security management and the

strategic cognitive network formation of IoT users.
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Algorithm 5.2 Strategic Risk Management with Bounded Rationality

1. Initialize parameters in the game G, cognition cost αi, cognitive networks
mi, ∀i ∈ N

2. Do
Best response dynamics:

3. Based on mi, i ∈ N , player i determines their best-response strategy through
(5.11) iteratively until reaching a BRNE
Cognitive network formation:

4. Each player i, i ∈ N , forms their cognitive network mi through Algorithm
5.1

5. Until [mi]i∈N and [ui]i∈N converge

6. Return mi and ui, ∀i ∈ N , which form a GNE

We next discuss some observations obtained from the algorithm. The steps

zik+1 and vik+1 in (5.21) and (5.22) of the algorithm can be simplified further.

Here, we only analyze zik+1, and the procedure follows for vik+1. First, we have

∇f i1(yik) = Λi(yik − eN−1). Then, [yik − λiy∇f i1(yik)]j = [yik − λiyΛi(yik − eN−1)]j ≥ 0,

∀j 6= i, j ∈ N . Thus, based on (5.17), we obtain

zik+1 = projC
(
yik − λiyΛi(yik − eN−1)− λiyαieN−1

)
= projC

(
yik + λiy(Λ

i(eN−1 − yik)− αieN−1)
)
.

The update of player i’s attention on player j at step k+ 1, j 6= i, can be expressed

as

[zik+1]j = proj[0,1]

(
[yik]j + λiy

(
Ri
ij

Ri
ii

uj
∑

p6=i,p∈N

Ri
ipup

(
1− [yik]p

)
− αi

))
.
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When
Riij
Riii
uj
∑

p 6=i,p∈N R
i
ipup (1− [yik]p) ≥ αi which is equivalent to

∑
p6=i,p∈N R

i
ip

up[y
i
k]p ≤

∑
p6=i,p∈N R

i
ipup −

Riii
Riijuj

αi, we know that [zik+1]j ≥ [zik]j. The player i’s

attention on player j increases at step k + 1, since there remains extra cognition

resources to be allocated which corresponds to a phenomenon called filling the

inattention. In addition, a smaller cognition cost αi yields a larger upper bound for∑
p 6=i,p∈N R

i
ipup[y

i
k]p, and hence player i can pay more attention to other players

which again leads to the observation of filling the inattention.

In the IoT network, user j’s decision has an impact on the strategy of user i.

To illustrate the discovery, we consider two groups of IoT users, and one group of

users have more incentive to secure the devices, i.e., their security investment is

larger. Then, from user i’s perspective, his attention on user j is influenced by the

term Ri
ii/(R

i
ijuj). When user j lies in the group of a higher investment uj, then

the upper bound
∑

p 6=i,p∈N R
i
ipup −

Riii
Riijuj

αi is larger. Therefore, each IoT user will

allocate more cognition resources to the users in the group with a higher security

standard which exposes the phenomenon of emergence of partisanship.

In a heterogeneous IoT network, the system parameters Ri
ij, R

i
ii, and decisions

ui are generally different. Then, for player i ∈ N , the term
Riij
Riii
uj
∑

p6=i,p∈N R
i
ipup,

j 6= i, j ∈ N , identifies the most influential agents in the network. Moreover,

the critical agents to pay attention to for each user almost overlap, resulting the

phenomenon of attraction of the mighty during the cognitive network formation.

We illustrate the discovered phenomena in Section 5.5.
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5.5 Case Studies

We use case studies of IoT-enabled smart communities shown in Fig. 1.4 to

corroborate the designed algorithms and illustrate the security management of

bounded rational agents in this section.

5.5.1 Effectiveness of Algorithm 5.1

First, we verify the effectiveness of Algorithm 5.1. Specifically, we choose

N = 10, α = 100 and generate a 9 × 9 random matrix which is not definite for

Λi. Thus, f i2 in (5.15) is not convex. The iterative updates through the designed

proximal algorithm are presented in Fig. 5.2 which reveal fast convergence to

the steady state. In addition, the algorithm yields a sparse cognition vector

m = [1, 0, 0, 0, 0.41, 1, 0, 0.30, 0.26]. To investigate the robustness of the algorithm,

we study the same network as in Fig. 5.2(a) with different initial conditions. The

results are shown in Figs. 5.2(b) and 5.2(c). We can verify that the steady states

in Figs. 5.2(b) and 5.2(c) are the same as the ones in Fig. 5.2(a) which corroborate

the robustness of the algorithm to initial conditions. To further verify the algorithm,

we also investigate the network containing different numbers of agents. The results

with 7 and 15 agents are presented in Figs. 5.2(d) and 5.2(e). Both results indicate

that the designed algorithm is reliable in computing the sparse steady strategy.

After conducting sufficient number of case studies, we conclude that the algorithm

is effective with probability 1 under arbitrary number of agents.
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(a) N = 10, case 1
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(b) N = 10, case 2
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(c) N = 10, case 3
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(e) N = 15

Figure 5.2: Performance of Algorithm 5.1 on a nonconvex f i2 in (5.15). (a), (d),
and (e) show the results with 10, 7 and 15 agents in the network, respectively. The
network configurations in (a), (b), and (c) are the same, but their initial conditions
are different. The algorithm yields the same result for cases in (a), (b), and (c)
which shows the robustness of the algorithm.
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5.5.2 Homogeneous Smart Homes

In this case study, we consider N = 10 homogeneous households in the smart

community, i.e., all the parameters are the same for each agent. Specifically, the

parameters are chosen as follows: Ri
jk = 20 unit/k$2 if j = k = i, otherwise

Ri
jk = 1 unit/k$2, ∀i; ri = 25 unit/k$, ∀i ∈ N and αi = α, ∀i, is chosen to satisfy

β = ‖mi‖1 = 3. The selected parameters indicate that the security level of a

household is mainly determined by its own security management policy rather than

the ones of connected households. Recall that we have obtained the analytical

solutions for homogeneous case in (5.37) which yield mi
j = 1

3
, ∀j 6= i, j ∈ N and

ui = 25
17

= 1.47k$. Thus, each agent allocates attention resource equally to their

connected neighbors. Fig. 5.3 presents the results by using Algorithm 5.2, where

the step index represents an iteration between two components of cognitive network

formation and security investment. We can conclude that the rational decision

yields less cost for players compared with their irrational decision counterparts due

to the bounded rationality. Furthermore, the algorithm gives the same cognitive

network structure as the one obtained from the analytical results which corroborates

the proposed integrated algorithm.

5.5.3 Emergence of Partisanship

We next investigate a smart community including two groups of agents denoted

by G1 and G2, respectively. Specifically, G1 includes 5 agents, G1 = {1, ..., 5}, and

G2 contains 10 agents, G2 = {6, ..., 15}. The parameters are the same as those in

Section 5.5.2 except that for agents in G1, ri = 40 unit/k$, ∀i ∈ G1, to distinguish

two groups of users. Thus, the agents in G1 have more incentives to secure their



145

0 5 10 15 20

Step

0

0.5

1

1.5

2

2.5

3

S
e

c
u

ri
ty

 m
a

n
a

g
e

m
e

n
t 

p
o

lic
y
 u

 (
k
$

)

Rational decisions of players

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

u
9

u
10

(a) rational strategy

0 5 10 15 20

Step

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

C
o

s
t 

J

Cost of players under rational behaviors

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

J
9

J
10

(b) cost under rational strategy

0 5 10 15 20

Step

0

0.5

1

1.5

2

2.5

3

S
e

c
u

ri
ty

 m
a

n
a

g
e

m
e

n
t 

p
o

lic
y
 u

s
 (

k
$

)

Bounded rational decisions of players

u
s

1

u
s

2

u
s

3

u
s

4

u
s

5

u
s

6

u
s

7

u
s

8

u
s

9

u
s

10

(c) bounded rational strategy

0 5 10 15 20

Step

-40

-35

-30

-25

-20

-15

-10

-5

0

C
o

s
t 

J
s

Cost of players under bounded rational behaviors

J
s

1

J
s

2

J
s

3

J
s

4

J
s

5

J
s

6

J
s

7

J
s

8

J
s

9

J
s

10

(d) cost under bounded rational strategy

(e) cognitive network

Figure 5.3: (a) and (b) are the rational decision of players and the corresponding
cost, respectively. (c) and (d) are the counterparts of (a) and (b) with bounded
rationality. (e) illustrates the formed cognitive networks which is symmetric in this
homogeneous case.

IoT products than those in G2. Fig. 5.4 shows the results. For agents in G1, the

cognitive network is characterized by mi = [0.75, ..., 0.75, 0, ..., 0], i ∈ G1, and for
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Figure 5.4: (a) shows the bounded rational strategy of players, indicating that
players in G1 have a lower cost. (b) depicts the RBP which corroborates that the
security risk of users increases under the bounded rational model comparing with
the fully rational one. (c) and (d) illustrate the formed sparse cognitive networks.
In (d), blue and green dots are agents in G1 and G2, respectively, and the red ones
are representatives in each group. In the network, all agents only allocate cognition
resource to smart homes in G1 at GNE, leading to the emergence of partisanship.

agents in G2, mj = [0.6, ..., 0.6, 0, ..., 0], j ∈ G2. Therefore, with limited cognition,

all agents only pay attention to the security decisions made by smart homes in

G1 which yields the phenomenon of partisanship. We also verify that the RBP

increases due to the bounded rationality.
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Figure 5.5: (a) shows the bounded rational decisions, and (b) presents the RBP
which is positive. (c) and (d) illustrate the formed cognitive networks. This case
study indicates that players in G1 are more critical that those in G2 in the cognitive
networks. In addition, cognition resource is further allocated to the users in G2
which reveals the phenomenon of filling the inattention.

5.5.4 Filling the Inattention

Under the setting of Section 5.5.3, we further assume that the agents have

better cognitive ability and can perceive more cyber risks in the smart community

in a way that β = ‖mi‖1 = 8. Other parameters are the same as those in Section

5.5.3. Fig. 5.5 presents the results. Specifically, we obtain mi = [1, ..., 1, 0.4, ..., 0.4]
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for i ∈ G1 and mj = [1, ..., 1, 0.33, ..., 0.33] for j ∈ G2, which show that the agents

in G1 play a critical role in the security risk management of smart community.

Furthermore, with more cognition resource, the agents in G2 that are not paid

attention to previously in Section 5.5.3 are considered by other households. This

phenomenon is termed as filling the inattention.

5.5.5 Attraction of the Mighty

The critical agents in the IoT-enabled smart community are those households

whose security management policies will be taken into account by the other agents

during their decision makings. Specifically, the nodes who often appear in the

cognitive networks of other nodes can be regarded as critical agents. In the following

case study, we aim to identify the critical agents in a smart community with N = 10

households using Algorithm 5.2. To model the heterogeneity of smart homes, we

choose Ri
jk = 3 sin(i) + 20 unit/k$2 for j = k = i. Otherwise, Ri

jk = 1 unit/k$2,

∀i; ri = 15 + 2i unit/k$ for i ∈ N ; and other parameters are the same as those in

Section 5.5.2. The results are shown in Fig. 5.6. Specifically, Fig. 5.6(e) shows the

established cognitive network of each player. For example, during the cognitive

network formation, player 1 chooses to observe the strategies of players 5, 9, and

10 in the network, and player 5’s cognitive network includes players 6, 9, and 10.

Furthermore, agents 5, 9 and 10 present in all agents’ cognitive networks, and hence

they constitute a critical community in this smart home network. In addition, agent

6 also plays a critical role in agents 5, 9 and 10’s cognitive networks. Therefore, the

behavior of agents paying attention to a specific set of households can be described

by the attraction of mighty. This case study demonstrates that Algorithm 5.2 is

able to identify the critical components in the smart communities.
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Figure 5.6: In this heterogeneous case with 10 users, the formed cognitive network
shown in (e) is sparse for each smart home. Note that the red rectangular in
each subplot of (e) denotes the user that forms his cognitive network with the
lines standing for links. Under the bounded rational model, the algorithm can
successfully detect the critical agents (attraction of the mighty) in the IoT network
which are 5th, 9th and 10th users in this case.



150

5.6 Summary

In this chapter, we have investigated the security management of users with

limited attention over IoT networks through a two-layer framework. The proposed

Gestalt Nash equilibrium (GNE) has successfully characterized the bilevel decision

makings, including the security management policies and the cognitive network

formations of users. Under the security interdependencies, users with a better

cognition ability can reduce their cyber risks by making mature decisions. Fur-

thermore, the designed proximal-based algorithm for the computation of GNE has

revealed some phenomena that match well with the real-life observations, including

the emergence of partisanship and attraction of the mighty. The future work would

be extending the framework to incorporate hidden information of unperceived

cyber risks of IoT users and design mechanisms to mitigate security loss. Another

interesting research direction is to extend the current model to scenarios when a

set of users are not fully strategic in minimizing their own risks and analyze the

impact of this class of users’ misbehavior on the network security risk.
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Chapter 6

Real-Time Security and

Resilience for Networked

Autonomous Systems

6.1 Introduction

This chapter shifts the focus from designing trustworthy decisions over static

cyber-physical networks to secure and resilient control design for dynamic CPS.

Cooperative mobile autonomous system (MAS) has a wide range of applications,

such as rescue and monitoring the crowd in mission critical scenarios. One of the

challenges in designing the MAS network is to maintain the connectivity between

agents/robots1. Connectivity control of the mobile robotic networks has been

addressed in a number of previous works including [92]. They have successfully

tackled a single network of cooperative robots. Recent advances in networked

1The “agent” refers to the robot in our MAS network. We also use the terms “MAS network”
and “robotic network” interchangeably.
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systems have witnessed emerging applications involving multi-layer networks or

network-of-networks. Therefore, the current single network control paradigm is

not yet sufficient to address the challenges related to the analysis and design of

multi-layer MAS networks.

In the problem investigated, the operator of each layer MAS network aims to

maximize the algebraic connectivity [57] of the global network. If the whole network

is fully cooperative or governed by a single network operator, then the designed

network is a team-optimal solution. However, in practice, different layers of robotic

networks are often operated by different entities, which makes the coordination

between separate entities difficult. This uncoordinated control design naturally

leads to a system-of-systems (SoS) framework of the multi-layer MAS network.

To address this problem, we establish a Nash game-theoretic model in which two

players, i.e., network operators, control robots at their layer, to maximize the

global connectivity independently. This model captures the lack of coordination

between players and their decentralized decision making in optimizing the SoS

performance. Furthermore, each network operator anticipates the jamming attacks

and controls robots by anticipating that a set of critical links between agents can

be compromised. This secure control design can be modeled by a Stackelberg game

between each network operator and the attacker.

In this chapter, we integrate the modeled Nash game between two network

operators as well as the Stackelberg game between the network operator and the

attacker which further yields a games-in-games framework. This new type of game

provides a holistic modeling that integrates the network-network interactions and

the agent-adversary interactions together for the secure and decentralized control

design of multi-layer MAS networks.
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6.2 System Framework and Problem Formulation

In this section, we introduce the system framework which includes the wireless

communication model and the strategic interdependent MAS network formation.

6.2.1 Wireless Communication Model

In the MAS, we consider a set V of robots in the network, and their positions

at time k are defined by the vector x(k) =
(
x1(k); x2(k); ...;xn(k)

)
∈ R3n. Robots

in the same network can exchange data via wireless communications. Denote the

communication link between robots i and j as (i, j). Then, the strength of the

communication link (i, j) is similar to the weight of the link in a network. Thus,

we associate a weight function w : R3 × R3 → R+ with every communication link

(i, j), such that

wij(k) = w
(
xi(k), xj(k)

)
= f

(
‖ xij(k) ‖2

2

)
, (6.1)

for some differentiable f : R+ → R+, where xij(k) := xi(k)− xj(k), and ‖ xij(k) ‖2

is the distance between robots i and j at time k. To capture the communication

strength decay with the distance, f is a monotonically decreasing function. A

typical choice of f is f(d) = δ(c1−d)/(c1−c2), where δ, c1 and c2 are positive constants.

Note that different forms of f capture various decay rates of communication strength

with distance [131]. Thus, the weight of the link between robots is positive if their

distance is within a threshold and degenerates to zero otherwise. Fig. 6.1 shows an

example of f with δ = 0.1, c1 = 2 and c2 = 6.
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Figure 6.1: Communication strength under function f(d) = δ(c1−d)/(c1−c2) with
δ = 0.1, c1 = 2 and c2 = 6.

6.2.2 Secure Interdependent MAS Network Formation

A two-layer MAS network model is shown in Fig. 6.2, where networks G1 and

G2 include n1 and n2 number of robots, respectively. More generally, we label

robots in G1 as 1, 2, ..., n1, and robots in G2 as n1 + 1, n1 + 2, ..., n1 + n2, i.e.,

V1 := {1, 2, ..., n1} and V2 := {n1 + 1, n1 + 2, ..., n}. Note that n = n1 + n2. Robots

in these two layers can also communicate, and this kind of communication link

is called intra-link while the link inside of a network is known as inter-link. The

agents at two layers are interdependent, and thus the integrated MAS network can

be modeled as a system-of-systems.

6.2.2.1 Network Designer

We consider two players, player 1 (P1) and player 2 (P2), operating two interde-

pendent MAS networks. P1 controls robots in network G1, and P2 controls robots

in G2. Specifically, P1 and P2 update their own network with a fixed frequency
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Figure 6.2: Multi-layer MAS network in an adversarial environment.

by controlling the positions of robots. After each update, the communication

link strength between robots are modified due to the change of distance. For

simplicity, define −γ := {1, 2} \ γ, where γ ∈ {1, 2}, and x := (x1,x2), where

x1 := (x1; ...;xn1) ∈ R3n1 and x2 := (xn1+1; ...;xn) ∈ R3n2 . Specifically, x1 and x2

are decision variables denoting the position of robots in G1 and G2, respectively. In

addition, the action spaces of P1 and P2 are denoted by X1 and X2, respectively,

which include all the possible network configurations. The set of pure strategy

profiles X := X1 × X2 is the Cartesian product of the individual pure strategy

sets. For each update, Pγ’s strategy xγ is based on the current configuration of

network G−γ. The goal of both players is to optimize the SoS performance, i.e.,

maximize the algebraic connectivity of the global network G. Hence, the utility

function for both players is λ2

(
LG(x)

)
: X → R+, where LG(x) is the Laplacian

matrix of network G when mobile robots have position x.

In the adversarial network formation game, one of the constraints is the minimum

distance between robots in each layer. Without this constraint, all robots at the



156

same layer will converge to one point finally which is not a reasonable solution.

Thus, we assign a minimum distance ρ1 and ρ2 for robots in G1 and G2, respectively.

6.2.2.2 Cyber Attacker

In addition to the network players P1 and P2, our framework also includes

a malicious jamming attacker as shown in Fig. 6.2. The attacker is able to

disrupt communication links via injecting a large amount of spam into the channel

which leads to the link breakdown eventually because of overload of the link. The

attacker’s objective is to minimize the algebraic connectivity of the network through

compromising links. Generally, the behavior of attacker is unknown to the network

operators. Therefore, it is difficult for the network designers to make optimal

strategies that can achieve the best performances of the network. However, by

knowing that attackers are strategic and are more prone to disrupt the critical

communication links in the network, the network operators can design a secure MAS

network resistant to cyberattacks. Specifically, network designers first anticipate

that the attacker can compromise a number ψ ∈ N+ of links, and then design

the MAS network by taking into account the worst-case attack that leads to the

most decrease of the network algebraic connectivity. The resistant property of the

network is reflected by the fact that the designers prepare for the potential attacks

and respond to them with best strategies. Here, ψ quantifies the security level of

the designed network.

Denote A by the action space of the attacker which is the set including all the

possible single communication link removal in the network. For convenience, we

denote Le
G(x) by the Laplacian matrix of the network after removing a set of links

e ⊆ A, i.e., the network after attack is G(V,E1 ∪ E2 ∪ E12 \ e), and the cardinality
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of e is |e| = ψ quantifying the ability of attacker, where ψ ∈ N+ is a positive integer.

Denote the feasible set of e by E . Then, the cost function of the attacker can be

captured by Λ(x1,x2, e) , λ2

(
Le
G(x)

)
, for Λ : X1 ×X2 × E → R+.

6.2.3 Games-in-Games Formulation

During the MAS network formation, the interactions between two networks G1

and G2 can be modeled as a Nash game where both players aim to increase the

global network connectivity. In addition, each network operator plays a Stackelberg

game with the malicious jamming attacker. Therefore, the multi-layer MAS network

formation in the adversarial environment can be characterized by a games-in-games

framework which is shown in Fig. 6.3. In the following, we specifically formulate

the attacker’s and network operators’ problems, respectively.

6.2.3.1 Stackelberg Game

In the Stackelberg game, network designer is the leader, and the jamming

attacker is the follower. The objective of the attacker is to minimize the algebraic

connectivity of network G. We can summarize the strategic behavior of the attacker

into the following problem:

QkA : min
e⊆A,|e|=ψ

λ2

(
Le
G(x(k + 1))

)
. (6.2)

On the leader side, network operator Pγ maximizes the algebraic connectivity

of the network, where γ ∈ {1, 2}, and his decision can be obtained via solving the
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Nash game

Jamming attacker

Network G2Network G1

Stackelberg game Stackelberg game

Figure 6.3: Games-in-Games framework which includes two network operators
and one attacker. Both network operators prepare for the cyberattack which form
a Stackelberg game with the attacker. In addition, two network operators are
uncoordinated and aim to maximize the global network connectivity which create
a Nash game.

optimization problem:

Qkγ : max
xγ(k+cγ)

min
e⊆A,|e|=ψ

λ2

(
Le
G(x(k + cγ))

)
s.t. ||xij(k + cγ)||2 ≥ ργ, ∀(i, j) ∈ Eγ,

||xij(k + cγ)||2 ≥ ρ12, ∀i ∈ Vγ, ∀j ∈ V−γ,

||xi(k + cγ)− xi(k)||2 ≤ dγ, ∀i ∈ Vγ,

xj(k + cγ) = xj(k), ∀j ∈ V−γ, (6.3)

where cγ ∈ N+ is a positive integer indicating the update frequency; ργ ∈ R+ is the

safety distance between robots; ρ12 ∈ R+ is the minimum distance between robots

in different layers; and dγ ∈ R+ is the maximum distance that robots in network
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Gγ can move at each update. The constraint xj(k + cγ) = xj(k), j ∈ V−γ captures

the uncoordinated nature that each network operator can only control the robots

at his layer. Furthermore, this constraint preserves security consideration between

agents in V−γ and also ensures consistent connectivity improvement when player γ

updates his network.

The Stackelberg game between the attacker and network operator γ can be

represented by Ξγ := {Nγ,Xγ,A, λ2} for γ ∈ {1, 2}, where Nγ := {Pγ, Attacker}

is the set of players, Xγ and A are action spaces and λ2 is the objective function.

6.2.3.2 Nash Game

The interaction between two robotic networks in an adversarial environment can

be characterized as a Nash game in which both players aim to increase the global

network connectivity. We denote this strategic game by ΞI := {P1, P2,X1,X2, λ2}.

Note that the MAS network formation game is played repeatedly over time,

and its structure is the same only with different initial conditions in terms of the

robots’ position. This two-person interdependent MAS network formation game

can be naturally generalized into an N -person game where each player controls a

subset of robots in the multi-layer networks.

It is possible that the attacker could manipulate and exploit operator’s anticipa-

tion for his own benefit. To capture this scenario, we need to propose an alternative

model that extends the current framework. In this work, we assume that the net-

work operators choose an action by anticipating credible adversarial behaviors. The

attacker can manipulate the above defense mechanism by anticipating defender’s

strategy. One way to achieve this goal for the attacker is to make decisions over a

time horizon instead of a single time step. When the time horizon contains two



160

steps, then the attacker address a three-stage game (attacker-defender-attacker)

that he takes the lead first. A dynamic game of similar three-stage structure

has been investigated in [3, 36]. Interested readers can refer to that for detailed

description of the framework.

6.3 Problem Analysis and Solution Concepts

In this section, we first reformulated problems in Section 6.2, and then present

the solution concept of the MAS network formation game.

6.3.1 Problem Reformulation

Note that each network designer updates the robotic network iteratively based

on the current configuration. It is essential to obtain the relationship between

the updated position and the current one due to the natural dynamics of robots.

To achieve this goal, we define Zij(k) := ||xij(k)||22 for notational convenience.

Analogous to applying Euler’s first order method to continuous dynamics, we can

obtain Zij(k +m) based on the current positions xi(k) and xj(k) as follows:

Zij(k +m) + Zij(k) = 2{xi(k +m)− xj(k +m)}T{xi(k)− xj(k)}, (6.4)

where ‘T’ denotes the transpose operator. Similarly, by using the function f in

(6.1), the updated weight wij(k +m) can be expressed as:

wij(k +m) = wij(k) +
∂f

∂||xij||22

∣∣∣∣
k

(Zij(k +m)−Zij(k)). (6.5)
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Therefore, we can obtain the Laplacian matrix LG

(
x(k + m)

)
by using (6.5) for

the global network.

Each network designer needs to solve a max min problem which are not straight-

forward to deal with. We first present the following result.

Theorem 6.1. For a network containing n nodes, the optimization problem

max
x

min
e⊆A,|e|=ψ

λ2(Le
G(x)) (6.6)

is equivalent to

max
x,β

β

s.t. Le
G(x) � β(In −

1

n
11T), ∀e ⊆ A, |e| = ψ, (6.7)

where β is a scalar, and In is an n-dimensional identity matrix. Note that the

optimal x and the corresponding objective values in these two problems are equal.

Proof. Let vi be the eigenvector associated with eigenvalue λi of the Laplacian

matrix Le
G(x), for ∀i ∈ V . Since Le

G(x) is real and symmetric, its eigenvectors

can be chosen such that they are real and orthonormal, i.e., vTi vj = 0,∀i 6= j ∈ V

and vTi vi = 1. Specially, we define v1 := 1√
n
, which is actually the eigenvector

corresponding to λ1 = 0. For convenience, we denote V := [v1, v2, ..., vn], and

Υ = diag(λ1, λ2, ..., λn), where diag is the diagonal operator. Thus, Υ is a diagonal

matrix with ith diagonal entry λi(L
e
G(x)). Furthermore, based on the orthonormal

basis, we obtain VVT =
∑n

i=1 viv
T
i = In. The definition of eigenvalue yields
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Le
G(x)V = VΥ. Multiplying by VT on the right leads to eigen-decomposition:

Le
G(x) = Le

G(x)VVT = VΥVT =
n∑
i=1

λi(L
e
G(x))viv

T
i . (6.8)

Since λ1 = 0, equation (6.8) can be simplified as

Le
G(x) =

n∑
i=2

λi(L
e
G(x))viv

T
i . (6.9)

Next, we add λ2(Le
G(x))v1v

T
1 to both sides of (6.9) and obtain Le

G(x)+λ2(Le
G(x))v1v

T
1

=
∑n

i=2 λi(L
e
G(x))viv

T
i +λ2(Le

G(x))v1v
T
1 . Note that similar to (6.8),

∑n
i=2(λi(L

e
G(x))−

λ2(Le
G(x)))viv

T
i +0·v1v

T
1 = V(Υ−diag(0, λ2, λ2, ..., λ2))VT = Le

G(x)−diag(0, λ2, λ2,

..., λ2), where we use λ2 for clarity in the diagonal entries. The eigenvalues of ma-

trix Le
G(x)− diag(0, λ2, λ2, ..., λ2) can be obtained straightforwardly as {0, 0, λ3 −

λ2, ..., λn−λ2} and thus Le
G(x)−diag(0, λ2, λ2, ..., λ2) � 0 based on property (2.32),

meaning that it is positive semidefinite. In sum,
∑n

i=2(λi(L
e
G(x))−λ2(Le

G(x)))viv
T
i �

0 which can be rewritten as Le
G(x) �

∑n
i=2 λ2(Le

G(x))viv
T
i . Then,

Le
G(x) + λ2(Le

G(x))v1v
T
1 �

n∑
i=2

λ2(Le
G(x))viv

T
i

+ λ2(Le
G(x))v1v

T
1 = λ2(Le

G(x))
n∑
i=1

viv
T
i . (6.10)

Thus, we obtain Le
G(x) � λ2(Le

G(x))(In − v1v
T
1 ), yielding

Le
G(x) � λ2(Le

G(x))(In −
1

n
11T). (6.11)

The above analysis is for any given attacker’s strategy e ⊆ A. Next, we show that

our modified algebraic connectivity maximization problem is equivalent to maxx,β β
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in (6.7), i.e., maxx,β β = λ2(L
e∗
G (x∗)), where x∗ and e∗ are the optimal decisions.

For convenience, we denote β∗ = maxx,β β. The proof includes two parts. First,

we show that β∗ ≥ λ2(L
e∗
G (x∗)). We aim to maximize the algebraic connectivity

λ2(L
e
G(x)), and (x∗, e∗) is a feasible solution pair. Therefore, based on (6.11),

β∗ ≥ λ2(Le∗
G (x∗)) should hold, since β is a free variable to optimize in the problem

(6.7) while its counterpart in (6.11), λ2(Le
G(x)), is dependent on x and e. Second,

we show that β∗ ≤ λ2(Le∗
G (x∗)). Since β∗, e∗,x∗ are feasible, then, the constraints in

(6.7) should be satisfied, i.e., LeG(x∗) � β∗(In− 1
n
11T), ∀e ⊆ A, |e| = ψ, which gives

Le
∗
G (x∗) � β∗(In− 1

n
11T). Let µ be any unit vector that satisfies µTv1 = 0. Then, we

obtain µTLe∗
G (x∗)µ ≥ µTβ∗(In− 1

n
11T)µ→ µTLe∗

G (x∗)µ ≥ β∗µTInµ−β∗µTv1v
T
1 µ→

µTLe∗
G (x∗)µ ≥ β∗µTInµ = β∗. Since vector µ is not fixed, and based on (2.33), we

have λ2(Le∗
G (x∗)) ≥ β∗. Therefore, maxx,β β = λ2(Le∗

G (x∗)), and (6.6) is equivalent

to (6.7).

Next, we define a new Stackelberg game Ξ̃γ := {Nγ,Xγ,A, αγ, λ2}, for γ ∈

{1, 2}, where Nγ, Xγ and A are the same as those defined in game Ξγ; αγ and λ2

are the objective functions of the network designer and attacker, respectively. Based

on (6.4), (6.5) and Theorem 6.1, the network designer γ’s problem is formulated as
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follows, for γ ∈ {1, 2}:

Q̃kγ : max
xγ(k+cγ),αγ(k+cγ)

αγ(k + cγ)

s.t. Le
G(k + cγ) � αγ(k + cγ)(In −

1

n
11T), ∀e ⊆ A, |e| = ψ,

2{xi(k + cγ)− xj(k + cγ)}T{xi(k)− xj(k)}

= Zij(k + cγ) + Zij(k), ∀i, j ∈ Vγ,

||xij(k + cγ)||2 ≥ ργ, ∀(i, j) ∈ Eγ,

||xij(k + cγ)||2 ≥ ρ12, ∀i ∈ Vγ, ∀j ∈ V−γ,

||xi(k + cγ)− xi(k)||2 ≤ dγ, ∀i ∈ Vγ,

xj(k + cγ) = xj(k), ∀j ∈ V−γ.

Note that Laplacian matrices Le
G(k + cγ), for γ = 1, 2, are constructed based on

(6.5).

The above analysis leads to the following corollary.

Corollary 6.1. The Stackelberg game Ξ̃γ is strategically equivalent to the game

Ξγ defined in Section 6.2.3, for γ ∈ {1, 2}. The interactions between two network

operators can be captured by a strategic equivalent Nash game denoted by Ξ̃I , where

Ξ̃I includes αγ, γ = 1, 2..

6.3.2 Equilibrium Solution Concepts

6.3.2.1 Stackelberg Equilibrium of the Adversarial Game Ξ̃γ

In the Stackelberg game, the attacker’s strategy is the best response to the

action that network designer chooses. Recall that Λ(x1,x2, e) = λ2

(
Le
G(x)

)
, and

the formal definition of best response is as follows.
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Definition 6.1 (Best Response). For a given strategy pair (x1,x2), where x1 ∈ X1

and x2 ∈ X2, the best response of the attacker is defined by BR(x1,x2) := {e′ :

Λ(x1,x2, e
′) ≤ Λ(x1,x2, e),∀e, e′ ⊆ A, |e′| = |e| = ψ}.

Thus, we give the definition of the Stackelberg equilibrium of game Ξ̃γ, for

γ ∈ {1, 2}.

Definition 6.2 (Stackelberg Equilibrium). For a given x−γ ∈ X−γ, the profile

(x∗γ, e
∗) constitutes a Stackelberg equilibrium of the adversarial game Ξ̃γ, for γ ∈

{1, 2}, if the following conditions are satisfied:

1. Attacker’s strategy e∗ ⊆ A, where |e∗| = ψ, is a best response to (x∗γ,x−γ),

i.e., e∗ ∈ BR(x∗γ,x−γ).

2. Network designer γ’s strategy x∗γ ∈ Xγ satisfies

min
e∈BR(x∗γ ,x−γ)

Λ(x∗γ,x−γ, e) = max
xγ∈Xγ

min
e∈BR(xγ ,x−γ)

Λ(xγ,x−γ, e) , Λγ∗,

where Λγ∗ is the Stackelberg utility of the designer γ.

6.3.2.2 Nash Equilibrium of the MAS Network Formation Game Ξ̃I

After P1 takes his action at step k, G1 and G12 are reconfigured, where G12 is

the network between G1 and G2. We denote network G1 and G12 at stage k as

G1,k and G12,k, respectively. For simplicity, we further define G̃12,k := G1,k ∪G12,k,

which is a shorthand notation for the merged network. Then, network Gk can be

expressed as Gk = G̃12,k ∪ G2,k. Similarly, after P2 updates network G2 at step

k, the whole network Gk becomes Gk = G̃21,k ∪G1,k, where G̃21,k := G2,k ∪G12,k.

Then, the formal definition of Nash equilibrium (NE) which depends on the position

of robots is as follows.
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Definition 6.3 (Nash Equilibrium). The Nash equilibrium solution to game Ξ̃I is

a strategy profile x∗, where x∗ = (x∗1,x
∗
2) ∈ X, that satisfies

λ2

(
LGk(x

∗
1,x

∗
2)
)
≥ λ2

(
LGk(x1,x

∗
2)
)
,

λ2

(
LGk(x

∗
1,x

∗
2)
)
≥ λ2

(
LGk(x

∗
1,x2)

)
,

for ∀x1 ∈ X1 and ∀x2 ∈ X2, where k denotes the time step.

Note that LGk in Definition 6.3 captures the network characteristic under all

possible attacks instead of a particular one. At the NE point, no player can

individually increase the global network connectivity by reconfiguring their MAS

network.

6.3.2.3 Meta-Equilibrium of the Games-in-Games

To design a secure multi-layer MAS, each network operator should take into

account the attacker’s behavior and the other network operator’s strategy. The

Nash game and the Stackelberg game are inherently coupled, as the adversarial

consideration naturally affects the operators’ decisions in the Nash game. Further-

more, the NE (Definition 6.3) alone cannot fully capture all the required elements

in the games-in-games framework, as the adversarial strategy is characterized by

the Stackelberg equilibrium. Hence, a holistic solution concept is necessary for our

composed game which is presented as follows.

Definition 6.4 (Meta-Equilibrium). The meta-equilibrium of the multi-layer MAS

network formation game is captured by the profile (x∗1,x
∗
2, e
∗) which satisfies the

following conditions:

1. (x∗γ, e
∗) constitutes a Stackelberg equilibrium of game Ξ̃γ, for γ = 1, 2.
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2. x∗ = (x∗1,x
∗
2) is an NE of game Ξ̃I .

Note that the meta-equilibrium is a solution concept for the composed game

(games-in-games), which captures the incoordination between two network operators

(Nash game) and the security consideration of each network operator (Stackelberg

game) simultaneously.

6.4 SDP-Based Approach and Iterative Algorithm

In this section, we reformulate the network designer’s problem as a semidefinite

programming (SDP) and design an algorithm to compute the meta-equilibrium of

the MAS network formation game.

6.4.1 SDP Reformulation

Notice that in Q̃kγ , the minimum distance constraints ||xij(k+cγ)||2 ≥ ργ, ∀(i, j) ∈

Eγ , are nonconvex. To address this issue, we regard Zij(k+cγ) as a new decision vari-

able. Based on the definition Zij(t) := ||xij(t)||22, we have ||xij(k+cγ)||22 = Zij(k+cγ).

Note that the Laplacian matrix Le
G(k+ cγ) depends linearly on Zij(k+ cγ), i, j ∈ V ,

based on (6.5). Then, we solve problems Q̃kγ with respect to unknowns Zij(k + cγ)

and x(k + cγ) jointly. In this way, Q̃kγ becomes a convex problem. However, due to

the coupling between the robots position and the distance vectors, solving Q̃kγ via

merely adding new variables yields inconsistency between the obtained solutions

x(k + cγ) and Zij(k + cγ), ∀i, j ∈ V . To address this issue, we first present the

following definition.

Definition 6.5 (Euclidean Distance Matrix). Given the positions of a set of n

points denoted by {x1, ..., xn}, the Euclidean distance matrix representing the points
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spacing is defined as

D := [dij]i,j=1,...,n, where dij = ||xi − xj||22.

A critical property of the Euclidean distance matrix is summarized in the

following theorem.

Theorem 6.2 ([50]). A matrix D = [dij]i,j=1,...,n is an Euclidean distance matrix

if and only if

−CDC � 0, and dii = 0, i = 1, ..., n, (6.12)

where C := In − 1
n
11T.

Note that (6.12) is a necessary and sufficient condition that ensures D an

Euclidean distance matrix. In addition, the inequality and equality in (6.12)

are both convex. Therefore, Theorem 6.2 provides an approach to avoid the

inconsistency between the robots position and distance vectors when they are

treated as independent variables. In specific, denote Z = [Zij ]i,j∈V , C = In− 1
n
11T,



169

and we can further reformulate problems Q̃kγ, γ ∈ {1, 2}, as

Qkγ : max
xγ(k+cγ),Z(k+cγ),αγ(k+cγ)

αγ(k + cγ)

s.t. Le
G(k + cγ) � αγ(k + cγ)C, ∀e ⊆ A, |e| = ψ,

2{xi(k + cγ)− xj(k + cγ)}T{xi(k)− xj(k)}

= Zij(k + cγ) + Zij(k), ∀i, j ∈ Vγ,

Zij(k + cγ) ≥ ρ2
γ, ∀(i, j) ∈ Eγ,

Zij(k + cγ) ≥ ρ2
12, ∀i ∈ Vγ, ∀j ∈ V−γ,

−CZ(k + cγ)C � 0, Zii(k + cγ) = 0, i ∈ V,

||xi(k + cγ)− xi(k)||2 ≤ dγ, ∀i ∈ Vγ,

xj(k + cγ) = xj(k), ∀j ∈ V−γ. (6.13)

Remark : In Qkγ , the relationship ||xij(k + cγ)||22 = Zij(k + cγ) is ensured by the

constraint 2{xi(k+ cγ)−xj(k+ cγ)}T{xi(k)−xj(k)} = Zij(k+ cγ) +Zij(k). In this

constraint, Zij(k) is known which can be calculated based on the current position

x(k), i.e., Zij(k) = ||xi(k)− xj(k)||22. Furthermore, constraints −CZ(k + cγ)C � 0

and Zii(k + cγ) = 0 guarantee that the elements in Z(k + cγ) are equal to the

distances between corresponding nodes.

Note that Pγ controls robots in Gγ and reconfigures the network by solving Qkγ

to obtain the new positions of robots for γ ∈ {1, 2}. Furthermore, Qkγ becomes

convex and admits an SDP formulation which can be solved efficiently.
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6.4.2 Iterative Algorithm

We have obtained the SDP formulations Q
k

γ, γ = 1, 2, and next we aim to

find the solution that results in a meta-equilibrium MAS configuration. In the

MAS formation game, P1 controls robots in G1 and reconfigures the network by

solving the optimization problem Q
k

1 to obtain a new position of each robot. P2

controls robots in network G2 in a similar way by solving Q
k

2. Note that the players’

action at the current step can be seen as a best-response to the network at the

previous step by taking the worst-case attack into account. Since both players

maximize the global network connectivity at every update step, then one approach

to find the meta-equilibrium solution is to address Q
k

1 and Q
k

2 iteratively by two

players until the yielding MAS possesses the same secure topology, i.e., P1 and P2

cannot increase the network connectivity further through reallocating their robots.

For clarity, Algorithm 6.1 shows the updating details. A typical example of the

algorithm is alternating update in which P1 and P2 have the same update frequency

but not update at the same time and reconfigure the MAS network sequentially.

6.4.3 Structural Results

Regarding the feasibility of the problems Qkγ for γ = 1, 2, we have the following

remark.

Remark: For a given multi-layer MAS network where the distance between

robots satisfies the predefined minimum distance constraint, problems Qk1 and Qk2

are always feasible. The feasibility can be indeed achieved by the players’ strategies

that they do not update the position of robots at step k.

When Qk1 and Qk2 are feasible at each update step, another critical property is
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Algorithm 6.1 Secure and resilient MAS network formation

1: Initialize mobile robots’ position xi(0), ∀i ∈ V , x(1) = 2x(1− c1) = 2x(1− c2),
c1, c2, κ = 10−6.

2: for k = 1, 2, 3, ... do
3: if k mod c1 = 0 and ‖x(k)− x(k − c1)‖∞ > κ then

4: P1 obtains new strategy x1(k + c1) via solving Qk1
5: else x1(k) = x1(k − 1)
6: end if
7: if k mod c2 = 0 and ‖x(k)− x(k − c2)‖∞ > κ then

8: P2 obtains new strategy x2(k + c2) via solving Qk2
9: else x2(k) = x2(k − 1)

10: end if
11: Break if ‖x(k) − x(k − c1)‖∞ ≤ κ and ‖x(k) − x(k − c2)‖∞ ≤ κ and

k > max(c1, c2)
12: k ← k + 1
13: end for
14: return x(k)

the convergence of the proposed iterative algorithm. The result is summarized in

Theorem 6.3.

Theorem 6.3. The proposed Algorithm 6.1 of the adversarial network formation

game converges to a meta-equilibrium asymptotically.

Proof. Note that at each stage of play, the game captured by Q̄k1 and Q̄k2 can be

characterized as a constrained potential game due to the identical objective of two

players [107]. The designed algorithm is based on the best response dynamics which

yields a non-decreasing network connectivity sequence. Furthermore, for a network

with n nodes, its algebraic connectivity is upper bounded by a value depending on

f(dγ) [68]. Thus, based on the monotone convergence theorem [63], the algorithm

converges to a meta-equilibrium asymptotically.

We next show that designers’ adversary-anticipation is beneficial to the network

performance and the multi-layer MAS network is resistant to strategic attacks.
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Lemma 6.1. Under the established games-in-games model in Section 6.2.3, we

obtain λ2

(
Lek
Gk

(x1(k),x2(k))
)
≥ λ2

(
Lẽk
Gk

(x̃1(k), x̃2(k))
)
, where (x1(k),x2(k)) is a

strategy pair of network operators resulting from (6.13) with an appropriate time

index; (x̃1(k), x̃2(k)) is a corresponding strategy pair without adversary-anticipation

(ignoring the first constraint in (6.13)); and ek and ẽk are the attacker’s admissible

strategies at step k satisfying ek ∈ BR(x1(k),x2(k)) and ẽk ∈ BR(x̃1(k), x̃2(k)).

The inequality also holds at the meta-equilibrium (x∗, e∗).

Proof. We prove the result consecutively in two parts, i.e., before and after the

network reaching meta-equilibrium. For the first part, the network configuration

at every time step k incorporates the consideration of |e| = ψ link attacks and

the physical constraints, i.e., the maximum distance that robot can move at one

time step and the minimum distances between robots. Assume that designer γ,

γ ∈ {1, 2}, updates the configuration and the position of robots becomes xγ(k)

at time k. Then, the updated position xγ(k) of player γ is a best response to

x−γ(k) with the consideration of constraints (ones in (6.13) with different time

index), and (x1(k),x2(k)) is an optimal strategy maximizing the connectivity under

any ψ link attacks. Therefore, the global MAS network is resistant to this type

of strategic attacks during updates. We next proceed to show the second part.

Through the designed algorithm, the network has been shown to converge to a

meta-equilibrium. The network connectivity at the meta-equilibrium (x∗1,x
∗
2) under

attack e∗ ∈ BR(x∗1,x
∗
2) is λ2

(
Le∗
G (x∗)

)
. Since two designers have the same objective,

at their equilibrium strategies (x∗1,x
∗
2), both designers have a consistent anticipation

on the set of link removals under the worst-case attack, i.e., e∗. By the definition

of Stackelberg game, we know that x∗γ is the optimal strategy under any ψ link

removals for designer γ, and this fact holds simultaneously for both designers at
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equilibrium. Therefore, λ2

(
Le∗
G (x∗)

)
is the maximum network connectivity that

designers can achieve under strategic attacks, showing the resistance of the network

to adversary at equilibrium.

We next investigate the uniqueness of the meta-equilibrium of the game, and

the result is shown in the following theorem.

Theorem 6.4. The meta-equilibrium of the game is not unique, i.e., different

equilibrium profiles (x∗1,x
∗
2, e
∗) are possible.

Proof. To show the nonuniqueness of the meta-equilibrium, one possible way is to

find a different position pair (x̃∗1, x̃
∗
2) but the network configuration is the same

with a one under the meta-equilibrium, say (x∗1,x
∗
2). This can be achieved by

the simultaneous offset or rotation in x∗1 and x∗2. For example, under the meta-

equilibrium (x∗1,x
∗
2, e
∗), the profile (x∗1 + ζ,x∗2 + ζ, e∗) is also a meta-equilibrium,

where ζ ∈ R3, and this shows the nonuniqueness of the equilibrium.

The network configuration at meta-equilibrium can also be different at which

the network exhibits various levels of network connectivity. This phenomenon is

further demonstrated through case studies in Section 6.6.

Remark: Due to nonuniqueness of meta-equilibrium, it is important for the

network designers to achieve an equilibrium state with a higher connectivity. We

need to deal with a mechanism design or an equilibrium selection problem. One

general method to address this type of problem is through a top-down approach.

Specifically, we first need to know the complete set of equilibria and then decen-

tralize the solution for two network designers to drive the system to a desired

equilibrium state. Hence, in addition to two network operators, we need to include

an additional central planner who has perfect information of the system and guides
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the decentralized network configuration updates of two designers to achieve a

particular equilibrium solution.

Another result is on the effectiveness of our proposed strategy comparing

with simpler ones without attack anticipation for the network designers. In the

proposed model considering adversary, if the attack does not occur, then the network

connectivity achieved at the meta-equilibrium is no better than the one obtained by

the model without considering adversaries. However, when the attack is successfully

launched, the network performance under the established framework is no worse

than the one without considering adversaries. Characterizing the conditions under

which these two classes of strategies coincide is not trivial and it is also related to

the system parameters of multi-layer MAS.

In Section 6.6, we use a case study to show the advantage of our proposed

framework over the traditional optimal design when the adversary is ignored. In

the case study, the equilibrium network is still connected under the strategic attack

while the optimal network counterpart is disconnected. Therefore, preparation for

and reacting to attacks can yield significant benefits for the MAS network under

adversarial environment.

6.5 Adversarial Analysis

In this section, we first analyze the security of MAS network by deriving a

closed form solution of the jamming attacker, and then present another type of

cyberattacks for further resiliency quantification of the proposed iterative algorithm.

Finally, we discuss the benefits of anticipating and reacting to the adversary for

the network designers during control design.
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6.5.1 Adversarial Analysis

Denote the network as G̃(i, j) = (V,E \ (i, j)) after removing a link (i, j) ∈ E

from network G, then, we have L̃ = L −∆L and ∆L = ∆D −∆A, where ∆D

and ∆A are the decreased degree and adjacency matrices, respectively. By using

equation (2.31), we obtain ∆D and ∆A as follows: ∆D = eiẽ
T
i,j + ej ẽ

T
j,i,∆A =

eiẽ
T
j,i + ej ẽ

T
i,j, where ei and ẽi,j are n-dimensional zero vectors except the i-th

element equaling to 1 and wij, respectively, and similar for ej and ẽj,i. Denote the

Laplacian matrix of G̃(i, j) as L̃(i, j), and by using ∆D and ∆A, we have

L̃(i, j) = L−
(
ei − ej

)(
ẽi,j − ẽj,i

)T
. (6.14)

When link (i, j) is attacked, the resulting Laplacian is given by (6.14). Denote

the Fiedler vector of L as u, and thus uTLu = λ2(L) based on the definition. By

using Courant-Fisher Theorem in (2.33), we obtain the following:

λ2

(
L̃(i, j)

)
≤ uTL̃(i, j)u

= uT
(
L−

(
ei − ej

)(
ẽi,j − ẽj,i

)T)
u

= uTLu− (ui − uj)(wijui − wjiuj)

= λ2(L)− wij(ui − uj)2. (6.15)

Therefore, by removing the link (i, j)∗, where

(i, j)∗ ∈ arg max
(i,j)∈E

wij(ui − uj)2, (6.16)

the upper bound of λ2

(
L̃(i, j)

)
is the smallest. The strategy in (6.16) can be seen

as a greedy heuristic for the attacker to compromise the network G. Specifically,
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the attacker can apply the above procedure iteratively to find a set of critical links

to accommodate the attacker’s ability. To this end, the jamming attacker’s strategy

is to compromise those links with top ψ largest value of wij(ui − uj)2, i, j ∈ V .

Therefore, the network operators designs secure strategies by anticipating that

these ψ critical links could be compromised by the attacker.

6.5.2 Another Type of Cyberattack

In order to assess the resilience of designed iterative algorithm in Section 6.4.2,

we introduce another type of adversarial attacks to the MAS network called global

positioning system (GPS) spoofing attack.

GPS Spoofing Attack: A GPS spoofing attack aims to deceive a GPS receiver

in terms of the object’s position, velocity and time by generating counterfeit GPS

signals [2]. In [89], the authors have demonstrated that UAVs can be controlled

by the attackers and go to a wrong position through the GPS spoofing attack.

We consider the scenario that the compromised robot is spoofed which can be

realized by adding a disruptive position signal to the robot’s real control command.

Therefore, through the GPS spoofing attack, the mobile robot is controlled by the

adversary, but it still maintains communications with other robots in the network.

In addition, we assume that the attack cannot last forever but for a period of ga

in the discrete time measure, since the resource of an attacker is limited, and the

abnormal/unexpected behavior of the other unattacked robots resulting from the

spoofing attack can be detected by the network operator.

Specifically, if robot i, i ∈ V , is compromised by the spoofing attack at time

step k1, and the attack lasts for ga time steps, then this scenario can be captured by

adding the following constraint toQkγ : xi(k+1) = xi(k)+ε(k), k = k1, ..., k1+ga−1,
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where ε(k) is the disruptive signal added by the attacker. The attacked robot is

usually randomly chosen. To evaluate the impact of attack, we choose the robot

that has the maximum degree denoted by imax and satisfies

imax ∈ arg max
i∈V

∑
j∈Ni

wij, (6.17)

where Ni is the set of nodes connected to robot i.

The GPS spoofing attack decreases the network connectivity. The resilience of

the designed algorithm can be quantified by the increased network performance by

the network operators’ responses to the cyberattacks.

6.5.3 Benefits of Anticipating and Reacting to Adversary

We comment on the benefits of the established approach that enhances the

network resistance to attacks. First, the Stackelberg modeling incorporates the

security consideration of network designers. This anticipative behavior of the

defender ensures the resistance of network under successful worst-case attacks. The

security consideration is critical and also practical for the network operators in

devising proactive defense strategies, and its significance is demonstrated through

case studies in Section 6.6. Second, besides the inherent security modeling, reacting

to the adversary also helps in improving the system performance if the attack is

unanticipated. Then, the operator can respond to the unanticipated attack in the

next round which enhances network resilience. Thus, the proposed method guides

the secure and resilient decentralized control design of MAS networks.
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6.6 Case Studies

In this section, we use case studies to quantify the security and resiliency of

the designed algorithm, and identify the interdependency in the multi-layer MAS

networks. We adopt YALMIP [101] to solve the corresponding SDP problems.

Specifically, we consider a two-layer MAS network in which G1 contains 2 nodes

and G2 contains 6 nodes. To illustrate that the designed framework can be applied

to cases where the robots at one layer can further be operated in a decentralized

way, we assume that the robots in G2 are divided into 2 equal-size groups connected

by a secure link between nodes 3 and 4. The investigated scenario is applicable

when the agents in MAS are sparsely distributed in geometric clusters.

The communication strength between agents follows the one in Fig. 6.1. Further,

two layers of MAS are operated in two planes where the third dimension of their

position is fixed satisfying the minimum distance ρ12. The initial positions of robots

in G1 (upper layer) are (1,3,1.2), (2,3,1.2), and robots in G2 (lower layer) are (0,0,0),

(0,1.5,0), (1,0,0), (2,0,0), (3,-1.5,0), (3,0,0). The safety distance between robots in

G1 and G2 is ρ1 = ρ2 = 1, and the maximum distance that robots at each layer

can move at each update step is d1 = d2 = 0.2. The update frequency of network

operator P1 is two times faster than network operator P2, i.e., 2c1 = c2. In addition,

both network designers prepare for the worst-case single link removal of jamming

attack, i.e., |e| = ψ = 1, during the MAS network formation.

6.6.1 Secure Design of MAS Networks

First, we illustrate the secure design of two-layer MAS network under the

jamming attack using Algorithm 6.1. Fig. 6.4 shows the results. The final positions



179

(a)

(b) (c)

Figure 6.4: (a) shows the evolutionary configuration of secure MAS network at
each step. (b) depicts the final network configuration. (c) shows the network
connectivity under attack with ψ = 1.

of agents in G1 are (1.88,-0.13,1.2), (1.88,0.87,1.2), and those in G2 are (0.94,-

0.85,0), (0.94,0.65,0), (1.60,-0.10,0), (2.26,0.65, 0), (1.55,-0.29,0), (2.92,1.40,0).

The connectivity of the integrated MAS network is iteratively improved, and

converges to a steady value 1.4 after approximate 40 steps. During the updates,

each network operator anticipates of the strategic jamming attack that compromises

the most critical communication link. Hence, the network shown in Fig. 6.4(b)
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is a meta-equilibrium configuration. This example shows the effectiveness of the

proposed method in designing secure multi-layer MAS network. To show the

nonuniqueness of the equilibrium solutions, we modify the initial positions of

agents where the robots in G1 (upper layer) start with (3,1,1.2) and (3,2,1.2). The

results are shown in Fig. 6.5. We can see that the final positions of agents in G1

are (1.06,0.59,1.2), (2.06,0.59,1.2), and those in G2 are (0.05,0.58,0), (1.55,1.45,0),

(1.05,0.58,0), (2.05,0.58, 0), (1.55,-0.29,0), (3.05,0.58,0). Further, the final network

configuration as well as network connectivity are different with the ones shown

in Fig. 6.4 which corroborate the meta-equilibrium of the proposed game is not

unique.

Another critical question is to compare the quality of the solution at meta-

equilibrium with the one obtained without considering attacks. To better illustrate

the results, we select another set of parameters for communication channels: δ = 0.1,

c1 = 1, and c2 = 1.2, where agents have a lower range of communication than

the one in Fig. 6.4. In addition, the number of agents in the upper layer G1 is

reduced to 1 and the number of attacks is equal to ψ = 2. The adversary’s action

set A includes the links between two layers, i.e., inter-links. Other settings are

the same as those in previous case studies. The results of network configurations

with and without considering attacks are shown in Fig. 6.6. In Fig. 6.6(a), since

no adversary is present in this scenario, the network connectivity remains around

0.48. To demonstrate the difference of the optimal solution without considering

attack and the equilibrium solution, we introduce two attacks by removing two

most critical inter-links using the strategy in Section 6.5.1 to the optimal network

(removing links (3,7) and (4,7)) at step 50, and the result is shown in Fig. 6.6(b).

Comparing with the secure MAS configuration using the proposed control with
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(a)

(b) (c)

Figure 6.5: (a), (b), and (c) show the results of the ones in Fig. 6.4. The initial
conditions of agents are modified and the final equilibrium network is different with
the one in Fig. 6.4 which shows the nonuniqueness of the equilibrium.

connectivity 0.17 shown in Fig. 6.6(d), the originally optimal network is completely

disconnected after the attack which makes the isolated agent 7 in an unanticipated

condition. This result shows the advantage of our proposed framework over the

traditional optimal design, since our approach integrates the security aspects in

the MAS control design.
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(a) (b)

(c) (d)

Figure 6.6: (a), (b), and (c) show the results when the network designers do
not anticipate attacks. (d) is the equilibrium network when designers considers
two link attacks. The final network configurations in (c) and (d) are different.
After introducing the worst-case attacks to the optimal network (compromising
the inter-links (3,7) and (4,7)), the optimal network in (c) is disconnected and
the connectivity becomes 0. However, the meta-equilibrium network in (d) is still
connected after 2 inter-links attacks with a connectivity of 0.17 which demonstrates
the enhanced security of MAS networks.

6.6.2 Resilience of the Network to Cyberattacks

Second, we investigate the resilience of the designed MAS network to cyberat-

tacks presented in Section 6.5.2. The metric used for quantifying the resilience is

the recovery ability of network connectivity after the adversarial attack.
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(a) (b)

Figure 6.7: (a) shows the evolutionary configuration of secure MAS network at each
step. The GPS spoofing attack is introduced at time step 9, and it lasts for 5 steps.
The attack duration depends on the detection ability of the network designer. (b)
shows the corresponding network connectivity.

For the GPS spoofing attack, we assume that it lasts for 5 time steps from

step 9 to 14 before the detection of abnormal movement of MAS by the network

operator. Note that the attack duration depends on the detection ability of the

network designer. After the identification of attack, the network designer can

reboot the compromised agent for it returning to the normal state. Moreover,

the horizontal axis in attacker’s disruptive command ε(k), k = 9, ..., 14, is drawn

uniformly from [0, 0.2]. Fig. 6.7 shows the obtained results where agent 7 is

compromised. Specifically, the network connectivity encounters a sudden drop at

step 9, from 0.58 to 0.37, as shown in Fig. 6.7(b) due to the spoofing attack. At

step 12 which is still in the attacking window, the connectivity, however, has an

increase which is a result from the updates of agents at the lower layer G2. When

the spoofing attack is removed, the network recovers quickly after step 14 which

shows agile resilience of the proposed control algorithm. Note that the final MAS

network configuration is the same as the one in Section 6.6.1.
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(a) (b)

Figure 6.8: (a) shows the evolutionary configuration of secure MAS network at
each step. (b) shows the corresponding network connectivity. The spoofing attack
launches at step 35 and it lasts for 6 steps. The network recovers and reaches a
meta-equilibrium quickly after the removal of attack.

We next investigate a scenario in which the spoofing attack is introduced after

the network reaching an equilibrium. Specifically, the attack launches at step 35

and it lasts for 6 steps. The results are shown in Fig. 6.8. Similar to the previous

case, the network can response to the attack in a fast fashion and tries to recover

the network connectivity with its best effort during the attacking window. After

the detection and removal of the attack, the network performance is improved and

the equilibrium network configuration is achieved which is the same as the previous

one before attack. Thus, the designed two-layer MAS network using Algorithm 6.1

is resilient to spoofing cyberattacks.

6.7 Summary

In this chapter, we have investigated the secure control of multi-layer MAS

networks under the adversarial environment by establishing a games-in-games

framework. The newly proposed meta-equilibrium solution concept has successfully
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captured the secure and uncoordinated design of each layer of MAS network through

integrative Stackelberg and Nash games. The developed iterative algorithm has been

shown effective in maximizing the network algebraic connectivity under adversaries,

yielding a meta-equilibrium network configuration. Case studies have shown that

the designed multi-layer MAS network is of agile resilience to various kinds of

cyberattacks. As for future work, we can consider the network operators having

different estimations of severity of attacks, and design the multi-layer MAS network

with heterogeneous security requirements. Another research direction is to design

mechanisms and decentralized algorithms to drive the multi-layer MAS to a desired

meta-equilibrium if multiple equilibria exist. We can also investigate other games-

in-games frameworks where the attacker’s behavior is more sophisticated, e.g., the

attacker makes decisions over a time horizon.
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Chapter 7

Security as a Service in the

Cloud-Enabled Internet of

Controlled Things

7.1 Introduction

A cloud-enabled Internet of Controlled Things (IoCT) allows heterogeneous

components to provide services in an integrated system. For example, cloud

resources can provide data aggregation, storage and processing for the physical

systems. Fig. 7.1 shows a framework of the cloud-enabled IoCT. The sensors

associated with devices1 can send data to the remote controllers through up-links,

and the control commands can be sent back to the actuator via down-links. Both

directions of information transmission are enabled by the cloud layer. The cloud-

enabled IoCT can be divided into two layers including the cyber and physical

1The term of devices in this chapter refers to things and physical systems in cloud-enabled
IoCT, and they are used interchangeably.
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Figure 7.1: Cloud-enabled IoCT framework. The sensor data associated with
physical devices can be stored and aggregated in the cloud. The remote controllers
use these collected information to compute the control commands with cloud
resources and sent them back to the actuators. The integration of cloud layer
enhances the performance of IoCT. Note that the vulnerability of cloud directly
influences the physical layer performance.

components. Generally, the devices at the physical layer and the cloud at the cyber

layer belong to two different entities, e.g., the physical devices may not own the

cyber infrastructure to communicate the controller or sensor information.

The cloud layer in Fig. 7.1 can be insecure, since it faces cyber threats, e.g.,

advanced persistent threats (APTs) [129] where malicious attackers can steal keys

used to authenticate devices in the cloud-enabled IoCT, leading to a complete

system compromise. Thus, to ensure a trustworthy cyberspace, we use a contract-

based FlipCloud (CB-FlipCloud) game-theoretic framework to model APTs of

the cloud. In CB-FlipCloud, the attacker and the defender compete to control the

cloud resources for a larger fraction of time through paying a cost. The strategic

outcome of the CB-FlipCloud game determines the vulnerability of cloud layer in
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IoCT.

At the physical layer, the devices use optimal control to minimize the operational

cost. As shown in Fig. 7.1, the performance of the physical system is closely related

to the security of the cloud. To use the cloud services, the device needs to plan

and buy services from the cloud to fulfill its control task. Specifically, the device

should provide economic incentives to the service provider (SP) at the cyber layer

to secure the cloud resources. The quality of services (QoS) of different SPs in terms

of the cloud security are not identical. The device has no knowledge about the

type of the cloud which is private information of the SP. By leveraging techniques

from contract theory, we capture the service relationships between the device and

cloud SP which further create a new paradigm of security as a service (SaaS) in

cloud-enabled IoCT. The challenge of the contract design lies in the design of an

incentive compatible and efficient mechanism for the integrated system in spite of

the incomplete information.

7.1.1 Notations and Conventions

To enhance the readability of this chapter, we summarize the adopted notations

as follows. Matrices A, B and C correspond to the state space model of the physical

system. Matrices Q and R related to the costs of state deviation and control effort

of the physical system. ρM captures the quality of security service of M-type

cloud, which corresponds to the proportion of time that the defender controls the

cloud resources denoted by zM. Note that the types of the contract lie in the set

M∈ {H,L}. Some other key notations are summarized in Table 7.1.
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Table 7.1: Nomenclature of Chapter 7

p̄M transfer payment in M-type contract, M∈ {H,L}
pM unit payment in M-type contract

qM targeted cloud quality in M-type contract

vM unit penalty of degraded service in M-type contract

f the renewal frequency of cloud defender

g the attacking frequency of cloud attacker

z the proportion of time of the defender controlling the cloud

qM,max the upper bound of required QoS in M-type contract

qM,min the lower bound of required QoS in M-type contract

εM the minimum required profit of M-type cloud

ψMD the unit defending cost of M-cloud

uMA the unit payoff of controlling the cloud of the attacker

φM weighting parameter of the physical system performance

ζ the spectral radius of matrix A

αk vulnerability of the controller to actuator link in IoCT

βk vulnerability of the sensor to controller link in IoCT

xk state of the device

yk output of the device

wk exogenous disturbance of the device

uk control input of the device

U o the best performance of device in IoCT without APTs

7.2 System Model

In this section, we first introduce a bi-level system model that captures the

features of the contract design for cloud-enabled IoCT. Then, we present the service

flows and timing in the contract design.
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Figure 7.2: Bi-level framework for the optimal contract design in the cloud-enabled
IoCT. The cyber layer uses a CB-FlipCloud game to capture the competitions
between the defender and attacker with actions f and g, respectively, and then
determines the cloud service z to the device based on the offered contract (p̄, p, q, v)
from the physical layer. The physical system at the lower layer uses optimal control
computed by the cloud, and its performance is dependent on the cloud QoS z. The
interdependent structure makes the decision-makings of two layers correlated.

7.2.1 Bi-Level System Framework

The proposed bi-level system framework is shown in Fig. 7.2 including the

cyber and physical layers. We introduce these two layers and state their couplings.

7.2.1.1 Cyber Layer

The cyber layer of the framework in Fig. 7.2 is concerned with cloud security

under APTs. We adopt a two-person CB-FlipCloud game-theoretic framework

to capture the interactions between the cloud defender and attacker. Specifically,
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the two players, the defender and the attacker, at the cyber layer compete to

control the cloud resources for a larger fraction of time. We denote by f and

g the strategies of the defender and the attacker, respectively. When the cyber

layer is under the control of the defender, then the cloud services can be reliably

delivered to the devices at the physical layer. Otherwise, the cloud services will be

degraded. Knowing that securing and attacking the cloud resources are costly for

the defender and the attacker, respectively, both players choose their actions in a

strategic manner. The outcome of the CB-FlipCloud game determines the cloud

QoS provided to the device, denoted by z. We consider without loss of generality

two types of QoS, high-type (H-type) and low-type (L-type). The type of QoS is

private information of the cloud SPs which is unknown to the devices. Due to the

asymmetric information, the devices at physical layer need to design a menu of two

contracts. We present the details of CB-FlipCloud game in Section 7.3.2.

7.2.1.2 Physical Layer

At the physical layer shown in Fig. 7.2, the systems use optimal control

computed by the cloud to operate the system. The role of cloud computing for

the physical systems and the dynamic models of physical systems are discussed in

Section 7.3.1. Note that the performance of the physical system is closely related to

the security of cloud. A better cloud QoS z ensures that the physical system receives

control commands more reliably. In order to receive cloud service, the device needs

to design a contract with the SP to guarantee the reliability of the cloud. Since

the physical system has no knowledge about the security of cloud, he needs to

design two types of contracts including H-type and L-type: (p̄H , pH , qH , vH) and

(p̄L, pL, qL, vL), where p̄i ∈ R+ is the transfer payment from the physical system;
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Figure 7.3: The timing of events in the contract design problem which include the
contracting and execution stages.

pi ∈ R+ is the unit payment of service; qi ∈ R+ is the targeted cloud quality;

and vi ∈ R+ is a parameter corresponding to the penalty of degraded service,

for i ∈ {H,L}. The detailed contract design problem for cloud-enabled IoCT is

introduced in Section 7.3.3. The contract design investigated in this chapter is

a hidden-type problem in contract theory. A more thorough introduction of the

contract mechanism design can be found in Chapter 2.2.

7.2.1.3 Couplings between Cyber and Physical Layers

The cyber layer and the physical layer in Fig. 7.2 are interdependent. At the

cyber layer, the cloud SP designs a cyber defense strategy f based on the received

contract from devices, and the resulting Nash equilibrium of CB-FlipCloud game

(f ∗, g∗) determines the delivered cloud QoS z. The device at the physical layer

designs the contracts by taking into account the received cloud QoS z. Here, we

drop the type index H and L for clarity. Due to the reliance of optimal control of

devices on the cloud services, the design of contract needs to take into account the

requirement of physical system performance. This coupling between cyber physical

layers makes the decision-makings of the cloud SP and the device interdependent.
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7.2.2 Timing of Contract Design

To better clarify the coupled CB-FlipCloud game and the contract design, we

present the detailed service flow in the bi-level framework in the following. The

contract design can be divided into two main stages including the contracting and

execution as shown in Fig. 7.3. The timing of the events are summarized as follows.

First, the nature reveals the type to the cloud but not to the physical device which

introduces an asymmetric information structure. Then, the device designs and

offers two contracts in terms of the type of cloud SP. The cloud picks one of the

contracts which completes the contracting stage. In the execution stage, based on

the accepted contract, the cloud SP makes a defending strategy against the cyber

attacker to achieve a certain level of security of the cloud resources. Then, the

remote control of the physical system is enabled by the resulting cloud service. If

the provided cloud quality does not meet the required one in the contract, then the

cloud SP pays a penalty.

In summary, the proposed mechanism starts with devices designing a menu

of contracts followed by the cloud SP providing agreed services. A penalty is

paid to the devices if the QoS is violated. This constitutes the service flow in the

cloud-enabled IoCT.

7.3 Problem Formulation

In this section, we first present the physical-layer optimal control of physical

systems in Section 7.3.1 and then establish a cyber-layer two-player nonzero-sum

CB-FlipCloud game for the cloud security in Section 7.3.2. The modular solutions

are used to formulate the contract design problem between the physical device and
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the cloud SP in Section 7.3.3.

7.3.1 Optimal Control of the Physical System

The devices in the cloud-enabled IoCT perform various tasks. To measure the

performance of IoCT, we need to consider the dynamics of physical systems, e.g.,

unmanned vehicles, intelligent lighting and autonomous personal robots. Specifically,

a device with discrete-time dynamics under the unreliable cloud can be captured by

xk+1 = Axk + αkBuk + wk,

yk = βkCxk, (7.1)

for k = 0, 1, ..., where xk ∈ Rn is the state; uk ∈ Rm is the control input; wk ∈ Rn

is the exogenous disturbance with mean zero; yk ∈ Rl is the sensor output; and

A, B, C are time-invariant matrices with appropriate dimensions. Note that

wk, ∀k, are independent. The stochastic processes {αk} and {βk} model the

vulnerability nature of the cloud, and they capture the successful information

transmission from the controller to the actuator (downlink) and from the sensor to

the controller (uplink), respectively.

Role of cloud computing for the devices in IoCT: The cloud-enabled

IoCT device is empowered with a high capacity of computational resources and

data storage. The device maintains a constant communication with the cloud to

collect and store sensor data, process information and compute optimal control

outputs. Due to its reliance on the cloud, the device needs to be assured of the

trustworthiness of the cloud. Note that {αk} and {βk} model the physical impact

of the unreliability of the cloud due to the APTs. Specifically, the disruption of
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data collection and storage services of the cloud will make the sensor measurements

unavailable, i.e., βk = 0. In addition, the disruption of computational services will

make the control outputs unavailable, i.e., αk = 0.

Note that the communications between the cloud and devices are secure in

our model. The degraded performance of the physical system is due to the loss of

sensing and control information at the cloud layer caused by APTs. Let αk and βk

be two Bernoulli random variables with the same probability mass function. Since

the provided cloud services are divided into two types including the H-type and

the L-type, then each type of service has

αik, β
i
k =


1, with probability ρi,

0, with probability 1− ρi,
(7.2)

for i ∈ {H,L}. In addition, we have 1 ≥ ρH > ρL > 0 to distinguish two types of

cloud.

Remark: The value of ρi, i ∈ {H,L}, which represents the cloud quality

has a direct influence on the physical system performance given by (7.3). In the

cloud-enabled IoCT, the real provided QoS by the cyber layer is determined by the

offered contracts of the device.

We consider the optimal control of the physical system in an infinite horizon,

and define the control policy as Π = {µ0, µ1, ..., µN−1}, where N is the decision

horizon, and function µk maps the information Ik to some control space, i.e.,

uk = µk(Ik). The information set Ik includes (α0, ..., αk−1), (β0, ..., βk), (y0, ..., yk),

and (u0, ..., uk−1), for k = 1, 2, ..., and specially for k = 0, I0 = (y0, β0). With a

given cloud quality parameter ρi, the device aims to find an optimal control policy
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that minimizes the quadratic cost function

J(Π∗|ρi) = lim sup
N→∞

1

N
E

{
N−1∑
k=0

(
xTkQxk + αiku

T
kRuk

)}
, (7.3)

while considering the system dynamics (7.1), where i ∈ {H,L}, R � 0 and Q � 0.

Note that R and Q are two matrices that capture the costs of state deviation and

control effort, respectively. For notational brevity, we drop the type index H and L

when the context is clear.

7.3.2 CB-FlipCloud Game for the Cloud Security

The cloud layer in IoCT faces APTs, and the traditional cryptography ap-

proaches may fail to secure the integrated system. To mitigate the cyber risks, we

use a CB-FlipCloud game to model the interactions between the defender (D) and

attacker (A) in the cloud. Specifically, the strategies of D and A are to choose

f ∈ R+ and g ∈ R+, the renewal and attacking frequencies with which they claim

control of the cloud resources, respectively. Note that f and g are chosen by

prior commitment such that neither D nor A knows the opponent’s action when

making choices. In addition, we focus the CB-FlipCloud game analysis on periodic

strategies, in which the moves of D and A are both spaced equally apart, and their

phases are chosen randomly from a uniform distribution [133].

Based on f and g, we can compute the expected proportions of time that D and

A control the cloud. The main analysis follows from Section 4.1 in [133]. When

g = 0, i.e., no A exists in the game, then D controls the cloud for all time which

is a trivial case. When A exists and D moves no slower than A, i.e., f ≥ g > 0,

and for a given D′s move interval τ , the probability that A moves over his phase
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selection which lies in τ is g
f
. In addition, A only moves once in τ since f ≥ g, and

the move is uniformly distributed over τ . Therefore, the expected proportions of

time that A and D control the cloud in this interval are g
2f

and 1− g
2f

, respectively.

Similar analysis applies to the case when g > f > 0. Denote the proportions of

time by z ∈ [0, 1] and 1− z for D and A controlling the cloud, respectively, and we

obtain

z =


1, if g = 0,

f
2g
, if g > f ≥ 0,

1− g
2f
, if f ≥ g > 0.

(7.4)

Notice that when g > f ≥ 0, i.e., the attacking frequency of A is larger than

the renewal frequency of D, then the proportion of time that the cloud is secure is

z < 1
2
; and when f ≥ g > 0, we obtain z ≥ 1

2
.

Remark: When the defender controls the cloud, then the information is

successfully transmitted through the cloud. In addition, in the CB-FlipCloud

game, when the interval between consecutive moves is small which results in high

move frequencies of D and A, then z can be interpreted as the probability of

random variables αk and βk being 1 in (7.1). Therefore, the CB-FlipCloud game

outcome z determines the cloud quality measure ρ in (7.2). We use z to represent

the provided cloud QoS in the following.

Then, the optimization problem for the cloud SP under the H-type contract

(p̄H , pH , qH , vH) can be formulated as

πH(p̄H , pH , qH , vH) = max
fH
{p̄H + min {pHzH , pHqH} − CH(fH)− VH(qH , zH , vH)},
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where p̄H , pH , qH and vH have been introduced in Section 7.2.1; fH is the defense

strategy of the cloud SP; and zH is obtained through (7.4) based on fH and gH , where

gH denotes the attacker’s strategy. CH and VH are defense cost and penalty functions

which have mappings CH : R+ → R+ and VH : (0, 1]×(0, 1]×R+ → R+, respectively.

The term min
{
pHzH , pHqH

}
indicates that the physical system will not pay more to

the cloud SP for receiving better cloud service as requested in the contract. Similarly,

for the L-type contract (p̄L, pL, qL, vL), the problem of the cloud SP becomes

πL(p̄L, pL, qL, vL) = maxfL{p̄L + min {pLzL, pLqL} − CL(fL)− VL(qL, zL, vL)}.

Based on the accepted contract, the attacker and defender in the CB-FlipCloud

game yield a Nash equilibrium strategy pair (f ∗, g∗) which has a unique mapping

to z∗ through (7.4). Hence, the CB-FlipCloud game equilibrium determines the

risk of a chosen cloud service for the device subject to APTs. More details of the

CB-FlipCloud game analysis including the equilibrium are presented in Section

7.4.1.

7.3.3 Contract Design for the Physical Layer

The type of the cloud is private information. The device designs a menu of

two contracts, (p̄H , pH , qH , vH) and (p̄L, pL, qL, vL), based on the prior probability

σ ∈ [0, 1] of the cloud being H-type.

Due to this asymmetric information structure, we find the optimal contracts

for the device by formulating it as a mechanism design problem. Specifically, by

using the revelation principle [110], we address the contract design by focusing on

the incentive compatible and direct revelation mechanisms. Therefore, the contract
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design problem (CDP) for the physical device is formulated as follows:

CDP : min
(p̄H ,pH ,qH ,vH), (p̄L,pL,qL,vL)

σ

(
p̄H + pHz

∗
H + φH

U o − U(z∗H)

|U o|
− VH (qH , z

∗
H , vH)

)
+ (1− σ)

(
p̄L + pLz

∗
L + φL

U o − U(z∗L)

|U o|
− VL(qL, z

∗
L, vL)

)
(7.5)

s.t. πH(p̄H , pH , qH , vH) ≥ πH(p̄L, pL, qL, vL), (7.6a)

πL(p̄L, pL, qL, vL) ≥ πL(p̄H , pH , qH , vH), (7.6b)

πH(p̄H , pH , qH , vH) ≥ εH , (7.6c)

πL(p̄L, pL, qL, vL) ≥ εL, (7.6d)

pH > 0, pL > 0, (7.6e)

qH,min ≤ qH ≤ qH,max < 1, (7.6f)

qL,min ≤ qL ≤ qL,max < 1, (7.6g)

where φH and φL are positive weighting parameters; U : (0, 1] → R is a utility

function of the physical device; and U o ∈ R denotes the optimal utility of the device

under z = 1 which is a known constant for each device. εH and εL are the minimum

required profits of H-type and L-type cloud, respectively. qH,min, qH,max, qL,min and

qL,max are bounds of the required cloud quality in each contract.

Note that (7.6a) and (7.6b) in CDP are incentive compatibility (IC) constraints

which ensure that a cloud does not benefit from lying about its type to the

physical system. In addition, (7.6c) and (7.6d) are called individual rationality (IR)

constraints which indicate that a cloud accepts the contract only when its minimum

profit is met. By focusing on the IC and IR constraints yielded by the revelation

principle [110], the device at the physical layer designs such contracts that give an
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optimal tradeoff between the payment to the cloud SP and the received cloud QoS.

7.4 Analysis of the Cloud Security and Physical

Systems

In this section, we first analyze the CB-FlipCloud game that captures the cloud

layer security, and then present the optimal control results of the physical systems.

In addition, we discuss the impact of cloud quality on the performance of devices.

7.4.1 Security Analysis of the Cloud Layer

In order to design a strategy for the cloud defender, we first need to analyze

the CB-FlipCloud game under each type of contract. The defense cost function

CM : R+ → R+ can be defined as

CM(fM) := ψMD fM (7.7)

which comes from the CB-FlipCloud game, whereM∈ {H,L}, and ψMD > 0 is the

unit defending cost of the cloud. The cloud SP provides different types of services in

terms of the QoS captured by z. The penalty function VM : (0, 1]×(0, 1]×R+ → R+

admits the form

VM(qM, zM, vM) = vM(qM − zM)1{qM>zM}, (7.8)

where zM is obtained through (7.4), and 1{•} is an indicator function. Recall that

vM is a term in the M-type contract.
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Some natural assumptions on the parameters are as follows.

Assumption 7.1. For the penalty and payment parameters, we have

0 < pL < pH , (7.9)

0 < vL < vH , (7.10)

pH < vH ≤ vH,max, (7.11)

pL < vL ≤ vL,max, (7.12)

where vH,max and vL,max are the maximum unit penalty in the H-type and L-type

contracts, respectively.

Note that the inequalities (7.9) and (7.10) differentiate the unit payment and

penalty in the H-type and L-type contracts. In addition, (7.11) and (7.12) indicate

that the unit penalty in both contracts is larger than the unit payment and bounded

above.

Based on (7.4), we need to discuss two cases of the CB-FlipCloud game. Specif-

ically, when fH ≥ gH > 0 which yields zH = 1− gH
2fH

, the CB-FlipCloud game for

the cloud under the H-type contract can be formulated as

max
fH

FH
D (fH , gH |p̄H , pH , qH , vH) = max

fH

{
p̄H + min

{
pH

(
1− gH

2fH

)
, pHqH

}
− ψHD fH − vH

(
qH +

gH
2fH
− 1

)
1{

qH>1− gH
2fH

}},
min
gH

FH
A (fH , gH |p̄H , pH , qH , vH) = min

gH

{
ψHA gH − uHA

gH
2fH

}
,

(7.13)

where FH
D : R+ × R+ → R and FH

A : R+ × R+ → R are objective functions of the
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cloud defender and attacker, respectively, and ψHA > 0 and uHA > 0 are the unit costs

of attacking the cloud and unit payoff of controlling the cloud, respectively. In FH
D ,

recall that p̄H + min
{
pH

(
1− gH

2fH

)
, pHqH

}
denotes the payment from the physical

system; ψHD fH captures the cloud defense cost; and vH

(
qH + gH

2fH
− 1
)

1{
qH>1− gH

2fH

}
is the penalty of degraded service. In FH

A , the attacker’s objective is to minimize the

attacking cost ψHA gH while maximize the utility of controlling the cloud resources

given by uHA
gH
2fH

. For fL ≥ gL > 0, the CB-FlipCloud game under the L-type

contract can be formulated similarly.

Another non-trivial case of the CB-FlipCloud game is when gM > fM > 0, for

M∈ {H,L}. In this scenario, the proportions of time that the cloud defender and

attacker controlling the cloud resources are equal to fM
2gM

and 1− fM
2gM

, respectively.

Then, the CB-FlipCloud game can be formulated as

max
fM∈R+

FMD (fM, gM|p̄M, pM, qM, vM) = max
fM∈R+

{
p̄M + min

{
pM

fM
2gM

, pMqM

}
−ψMD fM − vM

(
qM −

fM
2gM

)
1{

qM>
fM
2gM

}},
min
gM∈R+

FMA (fM, gM|p̄M, pM, qM, vM) = min
gM∈R+

{
ψMA gM − uMA

(
1− fM

2gM

)}
.

The interpretations of each term in FMD and FMA are the same as the corresponding

one in (7.13). Denote the nonzero-sum CB-FlipCloud security game underM-type

cloud by GM, M∈ {H,L}, for convenience. Then, the solution concept of GM is

defined as follows.

Definition 7.1 (Nash Equilibrium of GM). A Nash equilibrium of the CB-FlipCloud
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game GM is a strategy profile (f ∗M, g
∗
M) such that

f ∗M ∈ arg max
fM∈R+

FMD (fM, g
∗
M|p̄M, pM, qM, vM) , (7.14)

g∗M ∈ arg min
gM∈R+

FMA (f ∗M, gM|p̄M, pM, qM, vM) , (7.15)

for M∈ {H,L}.

Based on the Nash equilibrium of the CB-FlipCloud game GM, we obtain

πM(p̄M, pM, qM, vM) = FMD (f ∗M, g
∗
M|p̄M, pM, qM, vM). (7.16)

Next, we analyze the cloud defender’s strategy for a given contract (p̄, p, q, v).

We first have the following proposition.

Proposition 7.1. Given a contract (p̄, p, q, v), the Nash equilibrium strategy of the

CB-FlipCloud game leads to q + g∗

2f∗
− 1 ≥ 0 for f ∗ ≥ g∗ > 0, and q − f∗

2g∗
≥ 0 for

g∗ > f ∗ > 0.

Proof. In the regime of f ∗ ≥ g∗ > 0, assume that q+ g∗

2f∗
−1 < 0, then p(1− g∗

2f∗
) > pq

and min{p(1 − g∗

2f∗
), pq} = pq. By focusing on FMD in the CB-FlipCloud game,

there exists at least one pair (f ′, g′) such that f ′ < f ∗ and 1 − g′

2f ′
= q. Then,

FMD (f ′, g′|p̄, p, q, v) < FMD (f ∗, g∗|p̄, p, q, v) which indicates that (f ∗, g∗) is not a

CB-FlipCloud game equilibrium. Hence, q + g∗

2f∗
− 1 < 0 does not hold. Similar

analysis applies to the regime of g∗ > f ∗ > 0, and we can obtain q − f∗

2g∗
≥ 0.

Proposition 7.1 indicates that the cloud will not provide better QoS than the

one required in the contract to achieve more profits. Based on Proposition 7.1, we
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can simplify the CB-FlipCloud game GM and obtain its Nash equilibrium solution

as follows.

Theorem 7.1. The Nash equilibria of the CB-FlipCloud game are summarized

as follows:

(i) when ψD
v+p

< ψA
uA

, then f ∗ = uA
2ψA

and g∗ = ψD
2ψ2
A
· u

2
A

v+p
;

(ii) when ψD
v+p

> ψA
uA

, then f ∗ = ψA
2ψ2
D
· (v+p)2

uA
and g∗ = v+p

2ψD
;

(iii) when ψD
v+p

= ψA
uA

, then f ∗ = uA
2ψA

and g∗ = v+p
2ψD

.

Proof. For f ≥ g > 0, the cloud defender’s problem is maxf
{
p̄ + p(1 − g

2f
) −

ψDf − v(q+
g

2f
− 1)

}
, which can be rewritten as maxf

{
p̄+ (p+ v)(1− g

2f
)−ψDf −

vq
}
. In addition, the attacker is solving ming

{
ψAg − uA

g
2f

}
. Then, the above

CB-FlipCloud game is strategically equivalent to the game that the defender solves

maxf
{

(1− g
2f

)− ψD
p+v

f
}

, and the attacker solves maxg
{
g

2f
− ψA

uA
g
}
, which reduces

the cloud security game to the form in [133] and can be solved accordingly. The

analysis is similar for the case when g > f > 0.

For clarity, a pictorial illustration of the obtained Nash equilibria of CB-FlipCloud

game is shown in Fig. 7.4. Under the Nash equilibrium, the utility of the cloud SP

can be expressed as

π(p̄, p, q, v) = p̄+ p− uAψD
ψA

− v(q − 1), for
ψD
v + p

<
ψA
uA

, (7.17)

π(p̄, p, q, v) = p̄− vq, for
ψD
v + p

≥ ψA
uA

. (7.18)

Remark: From Proposition 7.1 and Theorem 7.1, we obtain that when ψD
v+p

<

ψA
uA

, the required cloud quality q in the contract needs to satisfy q ≥ 1− ψDuA
2ψA(v+p)

> 1
2
;
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Figure 7.4: Illustration of the Nash equilibria of CB-FlipCloud game in terms of
the relationship between ψD

v+p
and ψA

uA
.

when ψD
v+p

> ψA
uA

, q ≥ ψA(v+p)
2ψDuA

; and when ψD
v+p

= ψA
uA

, q ≥ 1
2
. In addition, two different

regimes in Fig. 7.4 have various physical interpretations. Specifically, the contracts

that result in a Nash equilibrium of CB-FlipCloud game in regime I correspond

to the devices receiving a higher cloud QoS and hence a better physical system

performance. Further, the cloud QoS in regime I means that more than half of the

total packets are successfully transmitted over the cloud, since the proportion of

time that the cloud is secure is z∗ > 1
2
. In contrast, the security service in regime

II with z∗ < 1
2

corresponds to the scenario that more than half of packets are lost

during the transmission resulting in a worse cloud QoS than that in regime I.

The difference between the H-type and L-type cloud’s profit under a certain

contract is critical in designing the optimal contracts in Section 7.5, and we define

it as follows.
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Definition 7.2. For a given contract (p̄, p, q, v), the benefit of being an H-type

cloud over an L-type cloud is defined as δ := πH(p̄, p, q, v)− πL(p̄, p, q, v).

Note that δ is not a function of contract terms, since p̄, p, q, v are not coupled

with other parameters of the cloud attacker and defender as seen from equations

(7.17) and (7.18). To facilitate the optimal contract design, without loss of generality,

we make the following assumption on the parameters at cyber layer.

Assumption 7.2. Several cyber layer parameters satisfy
ψHD
ψHA

<
ψLD
ψLA

and uHA = uLA.

In Assumption 7.2, the inequality
ψHD
ψHA

<
ψLD
ψLA

indicates that the H-type cloud is

more resistant to malicious attacks, and the equality uHA = uLA represents that the

unit payoff of compromising two types of cloud are the same. Note that Assumption

7.2 is not strict, and we use it to determine the sign of δ. Based on (7.17), (7.18)

and Assumption 7.2, we obtain δ ≥ 0. Thus, the profit of the H-type cloud is no

less than the L-type cloud for a given contract (p̄, p, q, v).

Remark: The parameter δ is not necessary non-negative, and Assumption 7.2

is not strict. To be practical, we choose δ to be non-negative. The results obtained

in this section can be easily extended to the case with negative values of δ.

7.4.2 Physical System Analysis

The cloud defense strategy at the cyber layer and the contract design of device

are interdependent. At the physical layer, one critical problem is the stability of

the device. First, we present the following lemma.

Lemma 7.1 (Lemma 1, [85]). Let (A,
√
Q) be observable and B invertible. Then,

under the cloud quality z, the condition ensuring the mean-square stability of the
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physical device with the optimal control in Theorem 7.2 is

ζ := max |λ(A)| < 1√
1− z

, (7.19)

where ζ and λ(A) denote the spectral radius and the eigenvalue of system matrix A,

respectively.

We choose the utility function of the physical system as

U(z) = −J(Π∗|z), (7.20)

where J(Π∗|z) is the optimal control cost under z.

Remark: The physical system is unstable when (7.19) is not satisfied, and

U(z) → −∞ under which the contract design problem is infeasible. Hence, the

contract should be designed in a way such that if it is picked by the cloud SP, the

provided cloud QoS can stabilize the physical system.

Obtaining the optimal cost J(Π∗|z) for the device is critical. We state the

solution to the optimal controller design over insecure cloud as follows.

Theorem 7.2 (Theorem 3, [85]). For the physical system with insecure cloud in

IoCT, the optimal control law is

u∗k = Gkx̂k, (7.21)

where the matrix Gk = −(R + BTKk+1B)−1BTKk+1A, with Kk recursively given
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by the Riccati equation

Pk = zATB(R +BTKk+1B)−1BTKk+1A,

Kk = ATKk+1A− Pk +Q.

The estimator x̂k takes the form

x̂k =


Ax̂k−1 + αk−1Buk−1, βk = 0,

xk, βk = 1.

In addition, when k → ∞, limk→∞Gk = G, and the controller takes the form of

uk = Gx̂k and

G =− (R +BTKB)−1BTKA,

K =ATKA+Q− zATKB(R +BTKB)−1BTKA. (7.22)

Note that the parameter K in (7.22) corresponds to the cloud quality z, and

the controller is computed using services in the cloud. Under condition (7.19), the

system is stable in mean square sense at the steady state as k →∞. Therefore, the

average physical system cost in an infinite horizon as shown in (7.3) will converge

asymptotically to the expected system cost at the steady state (see Chapter 7, [21]).

Based on (7.3) and (7.21), we obtain

J(Π∗|z) = lim sup
N→∞

1

N
E

{
N−1∑
k=0

(
xTkQxk + zuTkRuk

)}

= E{xTN−1QxN−1 + zuTN−1RuN−1}

= E{xTN−1QxN−1 + zx̂TN−1G
TRGx̂N−1}. (7.23)
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The relationship between z and J(Π∗|z) is critical for the contract design.

Specifically, we have the following lemma.

Lemma 7.2. Under the condition ζ < 1√
1−z , the cost J(Π∗|z) of the physical system

is monotonically decreasing with the increase of cloud quality z.

Remark: Lemma 7.2 can be interpreted as follows. With smaller z, i.e., the

probability of loss of information over the cloud is large, then the physical system

states and the control inputs will encounter large deviations from the nominal ones

frequently. Therefore, the control cost J(Π∗|z) increases. The following example is

used to corroborate the monotonicity of J(Π∗|z) with respect to z.

Example: The physical system matrices are given by A =

1.25 −1.3

−1 0.5

,

B = C =

1 0

0 1

. Then the spectral radius of matrix A is equal to ζ = 2.08.

From Lemma 7.1, the worst-case cloud quality is z = 0.77 to stabilize the system.

In addition, the exogenous disturbance is with zero mean and unit variance. By

designing the optimal controller as in Theorem 7.2, Fig. 7.5 shows the system per-

formance under various cloud qualities with an initial system state x0 = [10,−10]T .

The results show that a better cloud quality leads to a lower system cost which

corroborates Lemma 7.2.

In the previous works [56, 85], the cyber security measurement z is fixed, and

the physical systems design the optimal control strategy based on z. In our work,

the physical layer plays an active role in the cloud-enabled IoCT and transfers

the risks to the cyber layer by adopting a contract design approach to enable an

on-demand service provision of security.
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Figure 7.5: (a), (c) and (e) show the system states under the cloud quality z = 0.9,
0.8 and 0.74, respectively. (b), (d) and (f) are the corresponding control inputs. The
physical system under z = 0.74 is unstable since z < 0.77. The results corroborate
that higher cloud quality yields a better system performance.
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7.5 Optimal Contracts Design under Asymmet-

ric Information

We have analyzed the CB-FlipCloud game at the cyber layer and the optimal

control of the physical system over insecure cloud in Section 7.4. In this section, we

design the optimal H-type and L-type contracts for the device under the asymmetric

information in both regimes shown in Fig. 7.4.

7.5.1 Optimal Contracts Design over Regime I

In regime I, the devices require a cloud QoS that more than half of the total

packets are successfully transmitted over the cloud to stabilize the system. To

design optimal contracts over regime I, we first simplify the constrained contract

design problem formulated in Section 7.3.3 as follows.

Proposition 7.2. The CDP in Section 7.3.3 is equivalent to

CDP′ : min
(p̄H ,pH ,qH ,vH)

QH(p̄H , pH , qH , vH) + min
(p̄L,pL,qL,vL)

QL(p̄L, pL, qL, vL)

s.t. pH > 0, pL > 0,

qH,min ≤ qH ≤ qH,max < 1,

qL,min ≤ qL ≤ qL,max < 1,

where QH(p̄H , pH , qH , vH) := σ(δ+εL+ψHD f
∗
H+φH

Uo−U(z∗H)

|Uo| ) and QL(p̄L, pL, qL, vL) :=

(1− σ)(εL + ψLDf
∗
L + φL

Uo−U(z∗L)

|Uo| ).
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Proof. Based on (7.16), the objective function in CDP can be rewritten as

min
(p̄H ,pH ,qH ,vH), (p̄L,pL,qL,vL)

σ

(
πH(p̄H , pH , qH , vH) + ψHD f

∗
H + φH

U o − U(z∗H)

|U o|

)
+ (1− σ)

(
πL(p̄L, pL, qL, vL) + ψLDf

∗
L + φL

U o − U(z∗L)

|U o|

)
. (7.24)

Furthermore, based on Definition 7.2, we have

πH(p̄L, pL, qL, vL) = πL(p̄L, pL, qL, vL) + δ,

πL(p̄H , pH , qH , vH) = πH(p̄H , pH , qH , vH)− δ. (7.25)

Then, plugging (7.25) into the IC constraints (7.6a) and (7.6b) yields

δ ≥ πH(p̄H , pH , qH , vH)− πL(p̄L, pL, qL, vL) ≥ δ,

⇒ πH(p̄H , pH , qH , vH)− πL(p̄L, pL, qL, vL) = δ. (7.26)

The constraints (7.6a)-(7.6d) can be equivalently captured by (7.26) together with

πL(p̄L, pL, qL, vL) ≥ εL since δ ≥ 0. On the other hand, notice that for given

pM and vM, the objective function (7.24) is minimized if πM(p̄M, pM, qM, vM)

achieves the minimum. The underlying interpretation is that a lower utility of

the cloud leads to a higher cloud QoS which is beneficial for the physical system.

Therefore, based on (7.26) and the IR constraint πL(p̄L, pL, qL, vL) ≥ εL, we obtain

πH(p̄H , pH , qH , vH)− πL(pL, qL, vL) = δ and πL(p̄L, pL, qL, vL) = εL. Therefore, the

constraints (7.6a)-(7.6d) further become

πH(p̄H , pH , qH , vH) = δ + εL, (7.27)

πL(p̄L, pL, qL, vL) = εL, (7.28)
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which result in CDP′.

Remark: Note that in CDP′, IC and IR constraints are incorporated into

the objective function. In addition, two separate minimization terms in CDP′ are

decoupled in the decision variables, and thus can be solved independently.

First, we focus on min(p̄H ,pH ,qH ,vH) QH(p̄H , pH , qH , vH) in CDP′. In regime I,

f ∗H =
uHA

2ψHA
and z∗H = 1 − ψHDu

H
A

2ψHA (vH+pH)
. In addition, three underlying constraints

are
ψHD

vH+pH
<

ψHA
uHA

, qH ≥ z∗H and ζ <

√
2ψHA (vH+pH)

ψHDu
H
A

. Then, we obtain the following

lemma.

Lemma 7.3. The H-type contract design in regime I is only dependent on the

system performance at physical layer, and a larger value of vH +pH leads to a better

contract.

Proof. Notice that arg min
(p̄H ,pH ,qH ,vH)

QH(p̄H , pH , qH , vH) ⇐⇒ arg max
(p̄H ,pH ,qH ,vH)

U(z∗H), since

f ∗H =
uHA

2ψHA
is irrelevant to the contract parameters. Thus, the contract design only

relates to the physical system performance. In addition, Lemma 7.2 indicates that

U(z∗H) is monotonically increasing with respect to z∗H . Since z∗H = 1− ψHDu
H
A

2ψHA (vH+pH)
,

larger vH + pH yields a better contract.

Next, through analyzing the impact of contract on the physical systems, we

obtain the optimal H-type contract in regime I as follows.

Theorem 7.3. Under Assumptions 7.1 and 7.2, the optimal H-type contract
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(p̄H , pH , qH , vH) in regime I is designed as

p̄H = 0, (7.29)

qH = qH,max, (7.30)

vH = min

{
vH,max,

ψHDu
H
A

2ψHA (1− qH,max)
− pH

}
, (7.31)

pH =
uLAψ

L
D

ψLA
+ (qH,max − 1)vH + εL. (7.32)

Proof. From (7.27), we obtain πH(p̄H , pH , qH , vH) = p̄H +pH−
uHAψ

H
D

ψHA
−vH(qH−1) =

δ+εL =
uLAψ

L
D

ψLA
− uHAψ

H
D

ψHA
+εL, which yields p̄H+pH−vH(qH−1) =

uLAψ
L
D

ψLA
+εL. Therefore,

pH + vH =
uLAψ

L
D

ψLA
+ vHqH − p̄H + εL. To maximize pH + vH , we obtain p̄H = 0 and

qH = qH,max. We can also verify qH = qH,max from the constraint qH ≥ z∗H . In

addition, qH ≥ 1− ψHDu
H
A

2ψHA (vH+pH)
yields vH ≤

ψHDu
H
A

2ψHA (1−qH)
−pH . Therefore, together with

the bound, the penalty parameter vH takes vH = min{vH,max,
ψHDu

H
A

2ψHA (1−qH,max)
− pH},

and then the unit payment pH is equal to pH =
uLAψ

L
D

ψLA
+ (qH,max − 1)vH + εL.

Note that when vH + pH ≤
ζ2ψHDu

H
A

2ψHA
, then no contract is placed to the H-type

cloud, since the provided cloud QoS cannot stabilize the physical device.

It can be seen that problem min(p̄L,pL,qL,vL) QL(p̄L, pL, qL, vL) in CDP′ is equiv-

alent the problem max(p̄L,pL,qL,vL) U(z∗L). Based on (7.28), we obtain pL + vL =

uLAψ
L
D

ψLA
+vLqL− p̄L+εL. Then, the L-type contract (p̄L, pL, qL, vL) immediately follows

with a similar analysis in Theorem 7.3.

Theorem 7.4. Under Assumptions 7.1 and 7.2, the optimal L-type contract
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(p̄L, pL, qL, vL) in regime I is given by

p̄L = 0,

qL = qL,max,

vL = min

{
vL,max,

ψLDu
L
A

2ψLA(1− qL,max)
− pL

}
,

pL =
uLAψ

L
D

ψLA
+ (qL,max − 1)vL + εL. (7.33)

Similarly, when the optimal contract in Theorem 7.4 satisfies vL + pL ≤
ζ2ψLDu

L
A

2ψLA
,

then the device will not place the contract due to the instability of the physical

system.

Remark: We summarize the features of the optimal H-type and L-type

contracts design in regime I as follows. First, the complex contract design is

simplified to a physical system cost minimization problem. Second, no contract will

be offered to the cloud SP if the resulting QoS cannot stabilize the physical system.

One possible reason is that the unit defending cost of cloud SP is relatively large,

and thus the cloud defender prefers not to spend enough effort on protecting the

cloud resources. Third, the transfer payment is equal to zero, and the requested

cloud quality achieves the upper bound. Fourth, the payoffs of the H-type and

L-type clouds are δ + εL and εL, respectively, which are constants in this scenario.

7.5.2 Optimal Contracts Design over Regime II

In regime II, the physical system can be stabilized even under the condition that

half of packets are lost during the transmission, and this characteristic indicates

that the physical system is quite robust inherently. Via a similar analysis as in
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regime I, the H-type and L-type optimal contracts over regime II can be designed

independently. We first investigate the H-type contract design through solving

min(p̄H ,pH ,qH ,vH) QH(p̄H , pH , qH , vH), where f ∗H =
ψHA (vH+pH)2

2(ψHD )2uHA
and z∗H =

ψHA (vH+pH)

2ψHDu
H
A

.

In addition, three underlying constraints are
ψHD

vH+pH
≥ ψHA

uHA
, qH ≥ z∗H and ζ ≤√

2ψHAu
H
A

2ψHAu
H
A−ψ

H
D (vH+pH)

.

On one hand, f ∗H =
ψHA (vH+pH)2

2(ψHD )2uHA
indicates that small vH + pH is desirable to

minimize the objective. On the other hand, U(z∗H) is monotonically increasing

with respect to z∗H . Since z∗H =
ψHA (vH+pH)

2ψHDu
H
A

, then larger value of vH + pH leads to

a smaller objective value. Thus, we need to consider the tradeoff between two

opposite terms in the objective. The optimization problem for the H-type contract

design in regime II is

min
(p̄H ,pH ,qH ,vH)

ψHA (vH + pH)2

2ψHDu
H
A

+ φH
U o − U(z∗H)

|U o|

s.t. pH > 0, qH,min ≤ qH ≤ qH,max < 1,

qH ≥ z∗H , z
∗
H ≤

1

2
,

ψHD
vH + pH

≥ ψHA
uHA

,

ζ ≤

√
2ψHDu

H
A

2ψHDu
H
A − ψHA (vH + pH)

.

Recall that ζ is a constant smaller than 1
2
. In addition, note that for the above

optimization problem, the same value of vH + pH leads to the same objective only if

the constraints are satisfied. Thus, the optimal contract in regime II is not unique.

We first focus on obtaining the optimal vH + pH .

Note that the constraints related to vH+pH can be captured by
ψHDu

H
A

ψHA

(
1− 1

ζ2

)
≤

vH + pH ≤
ψHDu

H
A

ψHA
. Next, define T (x) :=

ψHAx
2

2ψHDu
H
A

+φH
Uo−U(z∗H)

|Uo| , where z∗H =
ψHAx

2ψHDu
H
A

. In

addition, the performance function U(z∗H) is approximated by an analytical function
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Algorithm 7.1

1: Initialize feasible x(0) ∈ [x, x̄], ε, w ∈ [0, 0.1], n = 0, T (x(−1)) = T (x(0)) + 2ε
2: while |T (x(n))− T (x(n−1))| > ε do

3: x(n+1) = x(n) − w
(
dT (x(n))

dx(n)

)−1

T (x(n))

4: x∗ = x(n+1)

5: if x(n+1) ∈ [x, x̄] then
6: go to step 11
7: else
8: project x(n+1) to the nearest feasible bound as x∗

9: go to step 13
10: end if
11: n = n+ 1
12: end while
13: return x∗

according to the specific characteristics of the device. Then, T (x) is continuously

differentiable, and the gradient descent method can be used to find the optimal x∗

that minimizes T (x) over x ∈
[
ψHDu

H
A

ψHA

(
1− 1

ζ2

)
,
ψHDu

H
A

ψHA

]
. Denote the feasible interval

by x ∈ [x, x̄] for convenience, and the iterative method to find the optimal x∗ is

summarized in Algorithm 7.1.

Based on Algorithm 7.1, the designed optimal H-type contract in regime II is

summarized in the following theorem.

Theorem 7.5. Under Assumptions 7.1 and 7.2, an optimal H-type contract

(p̄H , pH , qH , vH) in regime II is

p̄H = vHqH +
uLAψ

L
D

ψLA
− uHAψ

H
D

ψHA
+ εL, (7.34)

qH = max

{
qH,min,

ψHAx
∗

2ψHDu
H
A

}
, (7.35)

vH = min {x∗, vH,max} , (7.36)

pH = x∗ − vH , (7.37)
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where x∗ is obtained through Algorithm 7.1.

Proof. The outcome x∗ = pH + vH of Algorithm 7.1 yields an optimal value of the

contract design problem in regime II. To design an optimal contract, we choose the

maximum possible unit penalty as vH = min {x∗, vH,max}. Based on x∗, we obtain

pH = x∗−vH . The least required cloud QoS in regime II is qH = max{qH,min,
ψHAx

∗

2ψHDu
H
A
}.

In addition, based on πH(p̄H , pH , qH , vH) = p̄H + pH
ψHA (vH+pH)

2ψHDu
H
A
− ψHA (vH+pH)2

2ψHDu
H
A
−

vH(qH−
ψHA (vH+pH)

2ψHDu
H
A

) = p̄H−vHqH +
ψHA (vH+pH)

2ψHDu
H
A

(pH − (vH + pH) + vH) = p̄H−vHqH

and πH(p̄H , pH , qH , vH) =
uLAψ

L
D

ψLA
− uHAψ

H
D

ψHA
+ εL, we obtain the transfer payment as

p̄H = vHqH +
uLAψ

L
D

ψLA
− uHAψ

H
D

ψHA
+ εL.

To design the L-type contract in regime II, the function T (x) in Algorithm

7.1 admits the form T (x) :=
ψLAx

2

2ψLDu
L
A

+ φL
Uo−U(z∗L)

|Uo| , where z∗L =
ψLAx

2ψLDu
L
A

and x ∈[
ψLDu

L
A

ψLA

(
1− 1

ζ2

)
,
ψLDu

L
A

ψLA

]
. Through similar analysis as that in Theorem 7.5, we

obtain the optimal L-type contract over regime II as follows.

Theorem 7.6. Under Assumptions 7.1 and 7.2, an optimal L-type contract (p̄L, pL, qL, vL)

in regime II is

p̄L = vLqL + εL,

qL = max

{
qL,min,

ψLAx
∗

2ψLDu
L
A

}
,

vL = min {x∗, vL,max} ,

pL = x∗ − vL, (7.38)

where x∗ is obtained through Algorithm 7.1.

Remark: The designed optimal contracts in Theorems 7.5 and 7.6 incorporate

the nature that the device only requires the level of cloud QoS that can stabilize
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the system. It is reasonable since the devices that propose contracts in regime II

are less critical as those making contracts over regime I who always request the best

possible cloud QoS. Different from the contracts in regime I, the transfer payment

in the contracts over regime II is not zero, because the physical system aims to

propose less unit payment while with a larger penalty in the contract. In addition,

this type of contract, i.e., with a high transfer payment, also aligns with the fact

that the cloud SP with worse QoS tends to receive payment ahead of time before

delivering services.

7.6 Case Studies

In this section, we illustrate the designed optimal contracts via case studies.

Specifically, we investigate the cloud security as a service for heterogeneous IoCTs

with an application to smart home design.

7.6.1 Smart Home Framework

A smart home (SH) is an intelligent system that incorporates advanced au-

tomation technologies to provide inhabitants with sophisticated monitoring and

control over the building function [77]. A general smart home illustration is shown

in Fig. 7.6 which includes various physical systems and the cloud. Therefore, the

SH can be seen as a small-scale cloud-enabled IoCT. Without loss of generality,

we mainly focus on three devices: a smart lighting system, a heating, ventilation

and air conditioning (HVAC) system and a pacemaker (Fig. 7.6). The smart

lighting system is designed to be energy-saving while guaranteeing the necessary

brightness of the room [104]. The HVAC system in the smart home controls the
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Pacemaker

Cloud

Lighting

HVAC system

Attacker Defender

Smart home

Figure 7.6: Cloud security as a service in SH design. The cloud-enabled SH includes
various physical systems and cloud resources. The SH owner makes a contract with
the cloud SP to enhance the system performance.

room temperature by optimally adjusting the air mass flow through the ducts into

the room [102]. The pacemaker device is to maintain a normal heart rhythm of

the patient through a controlled electrical pulse to the heart [51]. The various

importance of each system and their different unit control cost can be captured by

the matrices Q and R in the performance objective (7.3).

7.6.2 Regime I Study: Optimal Contracts for Pacemaker

We design the optimal contracts for the pacemaker device in this section. The

system states include the heart rhythm and its adjustment speed [51, 123]. The

objective is to maintain the patient’s heart rhythm at a nominal value with small

bounded state deviations. Due to the significant importance of the device, the

required cloud quality should be high. Through the eigenvalue analysis of the

adopted system model, the minimum cloud QoS is z = 0.889, above which the state

deviations are within an acceptable interval. Since z > 0.5, the contract design for
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pacemaker naturally falls into the regime I in Fig. 7.4.

Several other parameters in the contract design are summarized as follows:

ψHA = $10K, ψLA = $4K, uHA = uLA = $20K, vH,max = $100K, vL,max = $90K, εL =

$10K, εH = $30K, qL,min = 0.89, qL,max = 0.91, qH,min = 0.89 and qH,max = 0.96.

Note that the cloud defense and attack costs include the expenditures on facilities

and labors, etc. The minimum profit for delivering the service varies with cloud

service providers, e.g., Google and Microsoft [70]. In addition, the H-type and

L-type contracts refer to different levels of provided cloud security services.

First, we illustrate the case of H-type contract design. Specifically, the unit

defending cost of the L-type cloud is chosen as ψLD = $8K, and we design the H-type

contract in the reasonable regime of ψHD that satisfies the conditions in Assumption

7.2. The corresponding results are shown in Fig. 7.7. In the contractable regime

of Fig. 7.7(a), with the increasing of ψHD , the unit payment pH decreases first and

then keeps as a constant. In contrast, in Fig. 7.7(b), the unit penalty vH increases

first and then becomes unchanged. The unchanging regime of ψHD is due to the

fact that vH achieves the maximum. The utility of the H-type cloud is decreasing

as the defending cost becomes larger as depicted in Fig. 7.7(c), and this property

can be verified by equation (7.27). Note that when ψHD /ψ
H
A ≥ 1.01, no H-type

contract is accepted by the cloud since the cloud’s minimum utility εH cannot be

met by providing the service. The required and real provided cloud quality are

presented in Fig. 7.7(d). As shown in Proposition 7.1, the provided cloud QoS zH

will never be greater than the required one qH . In addition, in the middle regime,

zH decreases as the defending cost increases. The reason is that the penalty vH

and the payment pH are constants, and then the cloud SP can earn more profit by

spending less effort on protecting the cloud resources which results in worse QoS.
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Figure 7.7: (a) and (b) show the unit payment pH and the unit penalty vH in the
designed H-type contract over regime I. (c) and (d) represent the utility of the
H-type cloud and the provided cloud QoS zH , respectively.

In the L-type contract, we fix the unit defending cost of the H-type cloud as

ψHD = $6K, and study the optimal contract design with varying parameter ψLD. Fig.

7.8 presents the results of the L-type contract. From Fig. 7.8(a), the unit payment

pL is increasing with larger unit defending cost ψLD which is different with that in

the H-type contract. The unit penalty vL in Fig. 7.8(a) has the same trend as that

in Fig. 7.7(a). The utility of the L-type cloud is a constant in the contractable

regime as shown in Fig. 7.8(c) which verifies equation (7.28). The provided cloud
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(c) L-type cloud utility
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Figure 7.8: (a) and (b) show the unit payment pL and the unit penalty vL in the
designed L-type contract over regime I. (c) and (d) represent the utility of the
L-type cloud and the provided QoS zL, respectively.

quality zL first keeps the same as the requested one qL in the contract, and then

decreases as the defending cost ψLD becomes larger, and finally jumps to zero since

no contract is agreed. The reason for the uncontractable regime in this case differs

from that in H-type contract design (the minimum profit is not met for the H-type

cloud). When ψLD/ψ
L
A > 1.32, the provided service zL is smaller than the minimum

required one qL,min = 0.89 which yields the uncontractable situation.
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7.6.3 Regime II Study: Optimal Contracts for HVAC Sys-

tem

The HVAC system in SH adjusts the interior room temperature by controlling

the air mass flow through the ducts into the house. Two critical states of the

HVAC system are the room temperature and its changing rate [102]. The HVAC

physical system is inherently robust, and it can be stabilized when the cloud quality

satisfies z > 0.28. When z < 0.28, the control cost is extremely high and thus

makes the control effort infeasible. Some parameters in the following case studies

are as follows: qH,min = 0.32, qH,max = 0.5 and φH = 0.13. Other parameters related

to the cloud layer are the same as those in Section 7.6.2.

The contract design for HVAC system lies in regime II, since the provided cloud

QoS will not exceed the required one which is upper bounded by qH,max = 0.5. To

design the optimal contracts over regime II, knowing the relationship between the

cloud QoS and the physical system performance is critical. The control cost of

HVAC system with respect to cloud quality is depicted in Fig. 7.9. To enable

the algorithmic design of contracts, the control cost of HVAC system can be

approximated by an exponential function, and hence yields a continuously twice

differentiable function T (x) in algorithm 7.1. Together with the results in Theorem

7.5, we can design the optimal H-type contract for HVAC system.

The results corresponding to different cloud defending costs ψHD are shown in

Fig. 7.10. The obtained optimal contracts in the contractable regime is nonlinear

with respect to ψHD . In addition, the cloud SP can provide the exactly required

service as in the contract when ψHD is small, and hence does not suffer penalty

despite the unit penalty term vH is increasing. However, the profit of the cloud
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Figure 7.9: Performance of HVAC system. When z < 0.28, the system is unstable.
In acceptable cloud quality regime, the system performance can be approximated
by an exponential function.

SP is decreasing due to the increase of defending cost and the decrease of transfer

payment. When the provided cloud QoS is worse than the required one, the device

can still make a contract with the cloud SP until the received service incurs a

huge control cost. The optimal L-type contract for HVAC system can be designed

similarly according to the results in Theorem 7.6.

7.6.4 Joint Contracts Design for Heterogeneous Devices

In this section, we present the integrated contacts design for all devices shown in

Fig. 7.6. The characteristics of the pacemaker device and HVAC system have been

introduced in Sections 7.6.2 and 7.6.3, respectively. For the smart lighting system,

better cloud QoS ensures the continuously smooth adjustment of the brightness in

SH. Through the spectrum analysis on the modeled system matrices, the lighting

system operates normally under the optimal control when cloud quality z > 0.44.
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Figure 7.10: (a) and (b) show the transfer payment p̄H and the unit penalty vH in
the designed H-type contract over regime II. (c) and (d) represent the utility of
the H-type cloud and the provided QoS zH , respectively.

Next, we design the optimal contracts under given unit defending cost of cloud

for all devices. Specifically, we set ψHD = $8K and ψLD = $3.2K for the H-type and

L-type cloud, respectively. Other parameters are the same as those in Sections

7.6.2 and 7.6.3.

Based on the analytical results in Section 7.5, Fig. 7.11 presents the designed

contracts for all three devices. Naturally, the terms in H-type contracts are all

no less than their counterparts in L-type contracts. The contracts of pacemaker
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Figure 7.11: (a) and (b) illustrate the optimal contracts design for the pacemaker,
HVAC system and lighting system in SH under both the H-type and L-type cloud
service providers, respectively.

device have the highest unit payment and penalty due to its demanding request of

cloud quality. Both H-type and L-type contracts of HVAC system are in regime

II, since the provided cloud QoS is less than 0.5 but is still able to stabilize the

system. The H-type contract of smart lighting system belongs to regime I while its

L-type contract lies in regime II. Though the transfer payment is 0 in its H-type

contract comparing with $16.12K in the L-type one, the lighting system needs to

pay more to the H-type cloud SP due to the corresponding larger unit payment.

The established SH framework is flexible, and the user can design globally optimal

contracts by taking the preferences of different devices into account.

7.7 Summary

We have studied the optimal contract design for the cloud-enabled Internet

of Controlled Things (IoCT) through the paradigm of security as a service. In

terms of the cloud security quality of service (QoS), the contract design has been



229

divided into two regimes (regimes I and II). The inherently robust devices can

design optimal contracts in regime I of which the required cloud QoS stabilizes

the physical system; while those devices whose optimal contacts lie in regime II

always ask for the best cloud QoS. In addition, payoffs of the considered two types

of cloud service providers (SPs) are constants based on the accepted incentive

compatible and individual rational contract from the device. The cloud-enabled

smart home design has shown that for critical devices, the user should require a

high-level cloud security and assign a large penalty if receiving a degraded service

in the contract. For the devices with lower priority, the user makes a transfer

payment to the cloud SP ahead of time for the security service to optimize his

utility. The future work would include the extension of the current framework by

considering the continuous type of cloud service provider and quantifying the value

of asymmetric information. Another future direction would take the communication

security between the cyber and physical layers into account, and design contracts

for trustworthy communication services.
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Chapter 8

Dynamic Contract Design for

Systemic Cyber Risk

Management

8.1 Introduction

Due to the interconnections between nodes in the network, the cyber risk can

propagate and escalate into systemic risks, which have been a major contributor to

massive spreading of Mirai botnets, phishing messages, and ransomware, causing

information breaches and financial losses. In addition, systemic risks are highly

dynamic by nature as the network faces a continuous flow of cybersecurity incidents.

Hence, it becomes critical for the network and asset owner to protect resources

from cyber attacks.

Due to the complex interdependencies between nodes and fast evolution nature

of threats, it is challenging to mitigate systemic risks of enterprise network. The
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asset owners need to delegate tasks of risk management to security professionals.

The owner can be viewed as a principal who employs a security professional to

fulfill security tasks. The security professionals can be viewed as an agent whose

efforts are remunerated by the principal.

In the cyber risk management of enterprise network, one distinction is the

lack of knowledge of the principal about the effort spent by the agent. This leads

to a dynamic principal-agent problem under asymmetric information in which

the risk manager determines his effort over time, while this effort is hidden to or

unobservable by the asset owner. This information structure makes the contract

design a challenging decision making problem. Conventional methods to address

problems of incomplete information include information state based separation

principle [86, 87] and belief update scheme [48]. However, these methods cannot

be directly applied to design an optimal contract for the players. To address

this challenge, we develop a systematic solution methodology which includes an

estimation phase, a verification phase, and a control phase. Specifically, we first

anticipate the risk manager’s optimal effort based on the systemic risk outcome

by designing an estimator for the principal. Then, we show that the principal has

rational controllability of the systemic risk by verifying that the estimated effort is

incentive compatible. Finally, we transform the problem using decision variables

that adapt to the principal’s information set and obtain the solution by solving a

reformulated standard stochastic control program.
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8.2 Problem Formulation

This section formulates the dynamic systemic cyber risk management prob-

lem of enterprise networks under asymmetric information using a principal-agent

framework, and presents an overview of the adopted methodology.

8.2.1 Systemic Cyber Risk Management

An enterprise network is comprised of a set N of nodes, where N = {1, 2, ..., N}.

Due to the interdependencies among different nodes and fast changing nature of

the threats, mitigating the systemic cyber risk is a challenging task which requires

expertise from cybersecurity professionals. For example, to reduce the enterprise

network vulnerability, it requires a constant monitoring of the Internet traffic into

and out of the system, regular patching and updating of the device software, and

continuous traffic scanning for intrusion detection. The principal1 can delegate the

risk management tasks over a time period [0, T ] to a professional manager.

The cyber risk of each node depends on the level of compliance with security

criteria, the number of vulnerabilities of the software and hardware assets, the

system configurations, the intrusion detection system alerts, and the concerned

threat models [120]. The risk also evolves over time as the enterprise node constantly

updates its software, introduces new functionalities, and interconnects with other

nodes. We let Y i
t ∈ R be the state of node i ∈ N to capture the risk of each node that

maps the system configurations at time t and the threat models to the associated

risk. Determining the value of Yt can be a sophisticated task, depending on the

system’s complexity. To measure the risk, the cyber professional needs to identify

1The principal refers to the network/asset owner, and the agent refers to the risk manager or
security professional which are used interchangeably.
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Figure 8.1: Systemic cyber risk management of an enterprise network containing
two nodes. The cyber risk at node i is denoted by Y i

t and the applied risk
manager’s effort is Ei

t , i ∈ {1, 2}. The cyber risk at each node depends on its
system configuration, the attack model, and the risk manager’s effort. Note that
the cyber risk can propagate due to the connections between nodes.

the attack graph comprised of paths that the adversary can exploit to penetrate

the network. Interested readers can refer to Chapter 5 in [120] for detailed steps

of cyber risk assessment, such as identification of risk sources, risk consolidation,

risk evaluation, aggregation and grouping. Game-theoretic frameworks can also

be adopted to quantify risks. For example, under the advanced persistent threat

(APT) type of cyber attacks, one can assess the node’s risk using FlipIt game model

in which the defender strategically configures the system by reclaiming the control

of the node with some frequencies [133]. The FlipIt game outcome yields node’s

risk, which is the expected proportion of time that the node may be compromised

by the adversary. As the nodes in the enterprise network are connected, their

risks become interdependent, and this leads to systemic risk [59, 78]. We use an
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N ×N -dimensional real matrix A with non-negative entries to model the influence

of node i on node j, i, j ∈ N . The diagonal entries in A represent the strength

of internal risk evolution, and the off-diagonal entries capture the risk influence

magnitude between nodes [106, 112]. For convenience, the risk profile of the network

is denoted by Yt = [Y 1
t , Y

2
t , · · · , Y N

t ]. The dynamics of the risk profile describes the

evolution of the systemic risk of the whole network.

To manage the risk profile, the risk manager can apply effort continuously over

the time period [0, T ]. Specifically, at every time t, t ∈ [0, T ], the risk manager

can spend effort Et ∈ E ⊆ RN+ on the nodes that mitigates the systemic cyber

risk, where E is a compact set. As fore-mentioned, the effort can be measured by

the amount of time and effectiveness of the risk manager spent on monitoring the

cyberspace of the enterprise network. The amount of reduced risk is monotonically

increasing with the allocated effort Et [106]. This fact is reflected by many security

practices, e.g., frequent scanning and analyzing the log files as well as timely

patching the software can reduce the probability of successful cyber compromise

by the adversary. Another critical factor to be considered is that the cyber risk

quantification faces uncertainties due to the randomness in the cyber network. For

instance, the risk uncertainty can be due to lack of knowledge as to whether the

vulnerabilities in question actually exist, and if so, how easily they can be exploited

by the attacker, or the risk source (malware, botnet) and attack graph are not

fully identified by the cyber risk assessor, which introduce the underestimation of

random cyber threats [58, 99]. Similar to [32], we use an N -dimensional standard

Brownian motion Bt which is defined on the complete probability space (Ω,F ,P)

to model the risk uncertainties on nodes. For clarity, Fig. 8.1 depicts an example

of cyber risk management of the enterprise network containing two interdependent
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nodes. Each node stands for a subnetwork with its own system configuration, and

the adversary can target different assets, e.g., application servers and workstations.

The risk manager applies efforts E1
t and E2

t to node 1 and node 2 continuously to

reduce the cyber risks Y 1
t and Y 2

t , respectively. The interdependency between two

nodes is captured by the factor A12 = A21.

In sum, we focus on a model of systemic cyber risk evolution described by the

following stochastic differential equation (SDE):

dYt = AYtdt− Etdt+ Σt(Yt)dBt,

Y0 = y0, (8.1)

where y0 ∈ RN+ is a known positive vector denoting the initial systemic risk. Let

DN×N
+ denote the space of diagonal real matrices with positive elements. Then,

Σt : RN → DN×N
+ captures the volatility of cyber risks in the network. Here, the

diffusion coefficient Σt(Yt) indicates that the magnitude of uncertainty can be

related to the dynamic risk of each node. We assume that the entries in Σt(Yt) are

bounded, satisfying
∫ T

0
‖Σt(Yt)1N‖2dt ≤ C1 almost surely, where C1 is a positive

constant, ‖ · ‖ denotes the standard Euclidean norm, and 1N is an N -dimensional

vector with all ones. Furthermore, the risk manager’s effort Et satisfies the condition∫ T
0
|Et|dt ≤ C2 almost surely, where C2 is a positive constant. Since the manager can

apply effort to every node through Et, the systemic risk level Yt is fully manageable

in the sense that more effort on each node reduces its cyber risk more significantly.

Note that the model in (8.1) captures the characteristics of systemic cyber risks

of enterprise network, and it is also adopted in various others’ risk management

scenarios including cyber-physical industrial control systems [146] and financial

networks [59, 64]. Furthermore, [11] has leveraged a similar stochastic model as in
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(8.1) with additional jumps to model the contagion of cyber security attacks, and

the authors have provided empirical justifications for the model using real-world

data of cyber attacks to various related components of a firm’s information system.

The dynamic contract design for cyber risk management can be broken into two

stages, namely the contracting stage and the execution stage. In the contracting

stage, the principal first provides a dynamic contract that specifies the payment

rules for the risk management to the agent and suggested/anticipated effort. Then,

the agent chooses to accept the contract or not based on the provided benefits. If

the agent accepts, then at the execution stage he needs to determine the adopted

effort Et to reduce the systemic cyber risk. During the task, the principal observes

the dynamic risk outcome Yt and pays pt ∈ P ⊆ R+ compensation to the agent

according to the agreed contract, where P is a compact set. After completing

the task, the agent also receives a terminal payment cT ∈ R+ which finalizes the

contract. Note that the claimed dynamic aspect of contract design lies in the fact

that the systemic risk, applied effort, and payments evolve over time. However, the

contract rule is fixed once the agent chooses to accept it, i.e., after the contracting

stage.

Therefore, the principal needs to decide on the payment process {pt}0≤t≤T as

well as the final compensation cT by observing the systemic risks. Note that the

effort level Et, t ∈ [0, T ], is hidden information of the agent, which corresponds

to the hidden-action scenario, or moral hazard, in contract theory. This feature

a reflection of the fact that the principal (asset owner) of the enterprise network

cares about the cyber risk outcome Yt rather than the implicit effort Et adopted

by the risk manager. Furthermore, we denote the principal’s information set by

Yt, representing the augmented filtration generated by {Ys}0≤s≤t. The agent’s
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information set is denoted by At, including {Ys}0≤s≤t and {Bs}0≤s≤t. Note that for

the agent, knowing {Ys}0≤s≤t or {Bs}0≤s≤t is equivalent as he can determine one

based on the other using also his effort process {Es}0≤s≤t. Specifically, at time t, the

principal’s knowledge includes only the path of Ys, 0 ≤ s ≤ t. In comparison, the

agent can observe every term in the system, including the principal’s information

as well as the path of Bs, 0 ≤ s ≤ t. The principal observes risk outcome Yt,

and his goal is to reduce the systemic risk by providing incentives to the manager.

Therefore, the principal has no direct control of the systemic risk, and the difficulty

he faces is in designing an efficient remuneration scheme based only on the limited

observable information.

Next, we rewrite the YT -measurable terminal payment as cT =
∫ T

0
dct + c0,

to facilitate the contract analysis, where ct has an interpretation of cumulative

payment during [0, t], and c0 is a constant to be determined. Note that c0 is a

virtual initial payment and the agent receives it not at initial time 0, but rather

at the terminal time T which is captured by the term cT . The evolution of the

aggregated equivalent Yt-measurable financial income process Mt of the cyber risk

manager can be described by

dMt = dct + ptdt. (8.2)

The cyber risk manager’s cost function is:

JA ({Et}0≤t≤T ; {pt}0≤t≤T , cT ) = E
∫ T

0

e−rtfA(t, pt, Et)dt+ e−rThA(MT ), (8.3)

where E is the expectation operator, r ∈ R+ is a discount factor, fA : [0, T ]× R+ ×

E → R is the running cost, and hA : R+ → R− is the terminal cost. The function
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fA is (implicitly) composed of two terms: the cost of spending effort Et in risk

management, and the received compensation pt from the principal. Note that the

final compensation cT is incorporated into hA(MT ). Assumptions we make on the

two additive terms of the cost functions are as follows.

Assumption 8.1. The running cost function fA(t, pt, Et) is uniformly continuous

and differentiable in pt and Et. Further, it is monotonically decreasing in pt, and

monotonically increasing and strictly convex in Et. The terminal cost function

hA(MT ) is a continuously differentiable, convex, and monotonic decreasing function.

The principal’s cost function, on the other hand, is specified as:

JP ({pt}0≤t≤T , cT ) = E
∫ T

0

e−rtfP (t, Yt, pt)dt+ e−rT (cT + hP (YT )) , (8.4)

where fP : [0, T ] × RN × P → R is the running cost, and hP : RN → R denotes

the terminal cost. The function fP captures the instantaneous cost of dynamic

systemic risk and the payment to the agent.

Assumption 8.2. The running cost for the principal, fP (t, Yt, pt), is uniformly

continuous and differentiable in Yt and pt. Further, it is monotonically increasing

in pt and Yt. The terminal cost for the principal, hP (YT ), is a continuously

differentiable and monotonic increasing function.

It is worth pointing out that the focused contract in this chapter does not include

renegotiation option for the participants, and it is assumed that both the principal

and the agent fully commit to the contracted rules. It would be interesting to extend

the current framework to the one where either the principal or the agent can choose

to renegotiate the rules during the execution of the contract, and this requires to
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include an extra variable in the contract capturing the cost of renegotiation. In

such cases, the designed optimal contracts should be renegotiation-proof.

Another point relates the continuous observation of dynamic risks by the princi-

pal. This setup is different from the one in [90], where the authors have investigated

a single-period (one-time observation) contract design for cyber insurance to miti-

gate the cyber risks. In our framework, instead of only focusing on the risk at a

particular instant, the principal cares about the macroscopic level of risk mitigation

of owned networked system over a period of time. To achieve this goal, the principal

can leverage professional software, such as UpGuard [1], to continuously observe and

monitor the dynamic cyber risks. We note that extension to contract design under

controlled observation (similar to [84]) by the principal is also worth investigating,

i.e., the principal needs to strategically determine when to observe the cyber risk

instead of having continuous access to the variable Yt.

8.2.2 Dynamic Principal-Agent Model

In cyber risk management, the principal contracts with the agent over [0, T ].

For a given contract, the risk manager is strategic in minimizing the net cost. This

rational behavior can be captured by the following definition.

Definition 8.1 (Incentive Compatibility). Under a given payment process {pt}0≤t≤T

and terminal compensation cT of the principal, the effort trajectory {E∗t }0≤t≤T of

the agent is incentive compatible (IC) if it optimizes the cost function (8.3), i.e.,

JA ({E∗t }0≤t≤T ; {pt}0≤t≤T , cT )

≤ JA ({Et}0≤t≤T ; {pt}0≤t≤T , cT ) ,∀Et ∈ E , t ∈ [0, T ]. (8.5)
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The asset owner needs to provide sufficient incentives for the agent to fulfill the

task of risk management, and this fact is captured through individual rationality

as follows.

Definition 8.2 (Individual Rationality). The agent’s policy is individually rational

(IR) if the effort trajectory {E∗t }0≤t≤T leads to satisfaction of

JA ({E∗t }0≤t≤T ; {pt}0≤t≤T , cT ) = inf
Et∈E

JA ({Et}0≤t≤T ; {pt}0≤t≤T , cT ) ≤ JA, (8.6)

where JA is a predetermined non-positive constant.

Note that the non-positiveness of JA ensures the profitability of risk manager

by fulfilling the risk management tasks.

We next provide precise formulations of the problems faced by the agent and

the principal. Under a contract {{pt}0≤t≤T , cT}, the agent minimizes his total cost

by solving the following problem:

(O− A) : min
Et∈E, t∈[0,T ]

JA ({Et}0≤t≤T ; {pt}0≤t≤T , cT )

subject to the stochastic dynamics (8.1), and the payment process (8.2).

By taking into account the IC and IR constraints, the principal addresses the

following optimization problem:

(O− P) : min
pt∈P, t∈[0,T ], cT

JP ({pt}0≤t≤T , cT )

subject to the stochastic dynamics (8.1), IC (8.5), and IR (8.6).

Note that the designed contract terms {pt}0≤t≤T and cT should adapt to the infor-
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mation available to the principal in view of the underlying incomplete information.

Denote the solution to (O− P) by {p∗t}0≤t≤T and c∗T . We present the solution

concept of the formulated problem as follows.

Definition 8.3 (Optimal Dynamic Mechanism Design (ODMD)). The ODMD

consists of the contract {{p∗t}0≤t≤T , c
∗
T} as well as the effort process {E∗t }0≤t≤T that

solve the problems (O− P) and (O− A), respectively. In addition, the compensation

processes p∗t and c∗T are adapted to Yt and YT , respectively, and the risk manager’s

effort E∗t is adapted to At.

Remark: ODMD captures the bi-level interdependent decision making of the

principal and the agent, which is a Stackelberg differential game with a nonstandard

information structure. Since the principal (leader) delegates the control task to

the agent (follower) but cannot observe his adopted action, ODMD features the

limited nature of the principal’s information. For those readers interested in the

introduction of differential games, they can refer to Chapter 2.1.4 for more details.

Due to the hidden effort of the risk manager, (O− P) is not a classical stochastic

optimal control problem. Specifically, the principal only observes the cyber risk

outcome rather than the effort which has to be incentivized. To address this

challenge brought about by the presence of asymmetric information, we adopt a

systematic approach to design an incentive compatible and optimal mechanism.

Comment on the Principal-Agent Model: In reality, there may exist multiple risk

managers executing tasks for the asset owner. In such cases, it would be possible

to extend the current single-principal single-agent framework to a single-principal

multi-agent one. To design the optimal contracts in this case, we need to analyze a

noncooperative game between the agents, as they compete for larger payments for

the work done. The solution concept for the agents’ problem would be the Nash
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equilibrium. The existence of this equilibrium depends on the contract designed

by the principal, and hence is not guaranteed under arbitrary contracts. It may

also be possible that the networked system components are owned by different

parties, and are managed by a number of risk managers. Then, we need to establish

a multi-principal multi-agent framework to capture this scenario. In addition

to analyzing the game between agents, we should also study, in this case, the

strategic behaviors of principals. Similar to the single-principal multi-agent case,

the existence of equilibrium between agents depends on the contracts designed

by the principals. Therefore, the contract design not only needs to consider the

interactions between principals, but also the rational responses of agents. These

practical extensions require a systematic investigation in the future.

8.2.3 Overview of the Methodology

We present an overview of the steps involved in our derivation, with details

worked out in the following sections.

The principal first estimates the risk manager’s effort based on the systemic risk

output (estimation phase), and then verifies that the estimated effort is incentive

compatible (verification phase), and finally designs an optimal compensation scheme

under the incentive compatible estimator (control phase). To address the challenge,

our goal is to transform the problem using variables that adapt to the principal’s

information set. To this end, the principal first assumes that the agent behaves

optimally with effort level E∗t (even though the principal does not know the exact

value) and calculates the corresponding cost of the agent. Another interpretation

for this step would be that the principal anticipates the agent implementing E∗t

which satisfies the IC constraint. Then, the principal designs the terminal payment
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form using the estimated agent’s cost (Section 8.3.1). The agent responds to the

contract strategically through his best effort Eo
t . When the anticipated E∗t coincides

with Eo
t , E

∗
t is an incentive compatible estimator and the principal facilitates the

agent implementing E∗t successfully (Section 8.3.2). Therefore, the principal can

determine the optimal payment p∗t based on E∗t by solving a standard stochastic

optimal control problem (Section 8.4.2).

8.3 Analysis of Risk Manager’s Incentives

We first provide a form of the terminal payment contract term and then focus

on deriving an incentive compatible estimator of the cyber risk manager’s effort.

8.3.1 Terminal Payment Analysis

We first present the following result on the IR constraint.

Lemma 8.1. The IR constraint holds as an equality, i.e.,

JA ({E∗t }0≤t≤T ; {pt}0≤t≤T , cT ) = JA. (8.7)

Proof. If JA ({E∗t }0≤t≤T ; {pt}0≤t≤T , cT ) < JA, the designed contract is not optimal

as the principal can further reduce his cost by paying less to the agent.

Next, we first express the agent’s cost under the principal’s information set Yt

as well as using the property that the agent chooses an optimal E∗t , and then use

the principal’s estimation about the agent’s cost to characterize the cumulative

payment process. We introduce a new variable Wt representing the expected future
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cost of the agent anticipated by the principal as follows:

Wt = E

[∫ T

t

e−r(s−t)fA
(
s, ps, E

∗
s )ds+ e−r(T−t)hA(MT )

∣∣Yt] . (8.8)

Note that Wt is evaluated under the information available to the principal at time

t. Thus, the total expected cost of the agent under the information Yt can be

expressed as

Ut = E

[∫ T

0

e−rtfA
(
t, pt, Et

)
dt+ e−rThA(MT )

∣∣Yt, Et = E∗t

]
=

∫ t

0

e−rsfA
(
s, ps, E

∗
s

)
ds+ e−rtWt. (8.9)

We further have conditions U0 = W0 = JA and WT = hA(MT ). The effort Et = E∗t

indicates that the agent behaves optimally under a given contract.

Proposition 8.1. The total expected cost of the agent, Ut, is a martingale under

Yt. In addition, there exists an N -dimensional progressively measureable process ζt

such that

dUt = e−rtζTt (dYt − AYtdt+ E∗t dt) , (8.10)

where T denotes the transpose operator.

Proof. First, we have

E[Ut|Yτ ] =E

[∫ τ

0

e−rsfA(s, ps, E
∗
s )ds+ e−rτWτ

∣∣Yτ]
+ E

[∫ t

τ

e−rsfA(s, ps, E
∗
s )ds+ e−rtWt − e−rτWτ

∣∣Yτ]
=Uτ + E

[∫ t

τ

e−rsfA(s, ps, E
∗
s )ds+ e−rtWt

∣∣Yτ]− e−rτWτ . (8.11)
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Then, using (8.8), we obtain

E

[∫ t

τ

e−rsfA(s, ps, E
∗
s )ds+ e−rtWt

∣∣Yτ]
= E

[∫ T

τ

e−rsfA(s, ps, E
∗
s )ds+ e−rThA(MT )

∣∣Yτ] = e−rτWτ . (8.12)

Hence, E[Ut|Yτ ] = Uτ , and Ut is a Yt-measurable martingale. Using martingale

representation theorem [88] yields (8.10).

Based on Proposition 8.1, we can subsequently obtain the following lemma which

facilitates design of the terminal payment term design in the optimal contract.

Lemma 8.2. The aggregate equivalent income process Mt evolves according to:

dMt =
rhA(Mt)

h′A(Mt)
dt− fA(t, pt, E

∗
t )

h′A(Mt)
dt+

1

h′A(Mt)
ζTt (dYt − AYtdt+ E∗t dt)

− 1

2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)
Tζt

h′2A(Mt)
dt. (8.13)

Proof. By substituting (8.10) into (8.9), we obtain

dUt = e−rtfA
(
t, pt, E

∗
t

)
dt− re−rtWtdt+ e−rtdWt,

⇒ dWt = rWtdt− fA
(
t, pt, E

∗
t

)
dt+ ζTt (dYt − AYtdt+ E∗t dt) . (8.14)

Since WT = hA(MT ), we adopt the form Wt = hA(Mt) and aim to characterize

the contract that yields this form. Then, we have JA = hA(M0) = hA(c0). Further,

(8.14) indicates that

h′A(Mt)dMt +
1

2
h′′A(Mt)χ

2
tdt =rhA(Mt)dt− fA

(
t, pt, E

∗
t

)
dt

+ ζTt (dYt − AYtdt+ E∗t dt) , (8.15)
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where χt is the volatility of process Mt. Matching the volatility terms in (8.15)

gives h′2A(Mt)χ
2
t = ζTt Σt(Yt)Σt(Yt)

Tζt. Then, (8.15) yields the result.

Remark: Note that (8.10) includes information on the cyber risk dynamics (8.1).

Thus, (8.13) can be seen as a modified stochastic dynamic system of the agent with

Mt as a new state variable. In addition, ζt can be interpreted as the principal’s

control over the agent’s revenue.

Another point to be highlighted is the role of pt in (8.13). Here, pt is not optimal

yet and its value needs to be further determined by the principal. Currently, we

can view pt as an exogenous variable that enters the constructed dynamic contract

form (8.13). In addition, the feedback structure of the dynamic contract on Yt is

reflected by the cumulative payment term ct shown later in Lemma 8.3.

Interpretation of Dynamic Contract: The dynamic contract determines the risk

manager’s revenue in (8.13), which includes four separate terms. The first term,

rhA(Mt)
h′A(Mt)

dt, indicates that the risk manager’s payoff should be increased to compensate

the discounted future revenue. The second term, −fA(t,pt,E∗t )

h′A(Mt)
dt, is an offset of the

direct cost of agent’s effort. The third part, 1
h′A(Mt)

ζTt (dYt − AYtdt+ E∗t dt), is an

incentive term, which captures the agent’s benefit from spending effort in risk

management. Here, the agent’s real effort enters into the Yt term. The last one,

−1
2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)Tζt
h′2A(Mt)

dt, is a risk compensation term (the manager is risk-averse),

capturing the fact that the risk manager faces uncertainties in the performance

outcome due to the Brownian motion.

For completeness, we present the cumulative payment process ct in the following

lemma.
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Lemma 8.3. The cumulative payment process ct evolves according to:

dct =
rhA(Mt)

h′A(Mt)
dt− fA(t, pt, E

∗
t )

h′A(Mt)
dt+

1

h′A(Mt)
ζTt (dYt − AYtdt+ E∗t dt)

− 1

2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)
Tζt

h′2A(Mt)
dt− ptdt. (8.16)

Proof. The result can be directly obtained from (8.2) and Lemma 8.2.

Lemma 8.3 characterizes the cumulative payment process ct with initial value

c0 given by hA(c0) = JA. We focus on the class of contracts in (8.16), and aim to

determine the optimal variables (ζt and pt) to minimize the principal’s cost. Note

that (8.16) is adapted to the principal’s information set Yt, since the principal

observes Mt and Yt, determines pt, ζt, and anticipates E∗t . In addition, this payment

process is directly related to the actual effort that the agent adopts, captured by dYt.

The variable ζt can be further interpreted as the sensitivity (or gain) of contract

payment to the risk difference under the agent’s optimal and actual efforts. In

addition, since Wt = hA(Mt), based on (8.8), we obtain

Ut = E

[∫ T

0

e−rtfA
(
t, pt, Et

)
dt+ e−rThA(MT )

∣∣At]
=

∫ t

0

e−rsfA
(
s, ps, E

∗
s

)
ds+ e−rthA(Mt), (8.17)

where the conditional expectation on At admits the same value as that on Yt.

Proposition 8.1 indicates that Ut is a martingale. Then, the expected value of

e−rthA(Mt) in (8.17) is zero which confirms the zero expected future cost of the

agent.
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8.3.2 Incentive Analysis of Cyber Risk Manager

Recall that the principal suggests an optimal effort process E∗t by assuming that

the agent behaves optimally. However, the agent can determine his actual effort

Et that minimizes the cost JA based on At which might not be the same as E∗t

that the principal suggests. Thus, the next important problem for the principal is

to determine an incentive compatible contract. To achieve this goal, the principal

determines the process ζt and the payment pt strategically to control the agent’s

actual effort Et.

Denote by Va(t,Mt) the agent’s value function with terminal condition Va(T,MT ) =

hA(MT ). The property of value function ensures that the risk management effort is

optimal if it satisfies the following dynamic programming equation: e−rtVa(t,Mt) =

minEt E
{∫ s

t
e−rufA(u, pu, Eu)du+ e−rsVa(s,Ms)

}
. Then, using (8.1), (8.2), and

(8.16), the cyber risk manager’s revenue can be expressed as:

dMt =
rhA(Mt)

h′A(Mt)
dt−

fA
(
t, pt, E

∗
t

)
h′A(Mt)

dt+
1

h′A(Mt)
ζTt (E∗t − Et) dt

− 1

2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)
Tζt

h′2A(Mt)
dt+

1

h′A(Mt)
ζTt Σt(Yt)dBt. (8.18)

We rewrite the risk manager’s problem as follows:

(O− A′) : min
Et∈E, t∈[0,T ]

JA ({Et}0≤t≤T ; {pt}0≤t≤T , cT )

subject to the stochastic dynamics (8.18), and the payment process (8.2).

The Hamilton-Jacobi-Bellman (HJB) equation associated with the stochastic opti-
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mal control problem (O− A′) is

min
Et

[
1

2

∂2Va
∂M2

t

(
1

h′2A(Mt)
ζTt Σt(Yt)Σt(Yt)

Tζt

)
+
∂Va
∂Mt

(
rhA(Mt)

h′A(Mt)
−
fA
(
t, pt, E

∗
t

)
h′A(Mt)

+
1

h′A(Mt)
ζTt (E∗t − Et)−

1

2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)
Tζt

h′2A(Mt)

)
+ fA(t, pt, Et)

]
+
∂Va
∂t

= rVa,

Va(T,MT ) = hA(MT ).

(8.19)

Based on the candidate value function Va(t,Mt) = hA(Mt), the second-order

condition of (8.19) is satisfied. Then, the optimal solution to (O− A′) is

Eo
t = arg maxEt

∂Va
∂Mt

1

h′A(Mt)
ζTt Et − fA(t, pt, Et)

= arg maxEt ζ
T
t Et − fA(t, pt, Et). (8.20)

For a given contract, Eo
t is the optimal effort of the agent. Then, when the

anticipated effort E∗t of the principal coincides with Eo
t , i.e., E∗t = Eo

t , the provided

contract is IC and E∗t is implemented. The following theorem captures this result.

Theorem 8.1. When the compensation process in the contract is specified by

(8.16), then the IC constraint is satisfied, i.e., E∗t is implemented as expected by

the principal, if and only if the following condition holds:

E∗t = arg maxEt ζ
T
t Et − fA(t, pt, Et), (8.21)

where ζt is adapted to the information Yt available to the principal.

Proof. We verify that E∗t is implemented by the agent.
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For an arbitrary process {Et}0≤t≤T , we define a variable

Ũt =

∫ t

0

e−rsfA
(
s, ps, Es

)
ds+ e−rthA(Mt),

where Mt is given by (8.18). Note that the HJB equation associated with (O− A′)

can also be written as 0 = minEt E
[
dŨt|At

]
. Then, we know that when Et 6= E∗t ,

the drift term of Ũt is positive and yields Ũt < E[ŨT |At]. Hence, at time t, the

expected total cost of the risk manager is greater than Ũt. When Et = E∗t , we

have E
[
dŨt|At

]
= 0, and thus Ũt = E[ŨT |At]. This verifies that E∗t is the incentive

compatible optimal decision of the risk manager such that his total expected cost

is achieved at the lower bound.

Based on Theorem 8.1, the principal can indirectly manipulate the implemented

effort of the agent by determining the variables ζt and pt jointly. Hence, under

(8.21), the suggested effort E∗t is incentive compatible. From (8.21), we can see

that the risk manager’s behavior is strategically neutral. Specifically, at time t,

the risk manager decides on the optimal effort E∗t based only on the current cost

(term fA(t, pt, Et)) and benefit (term ζTt Et) instead of future-looking variables. This

neutral behavior is consistent with the fact that a larger current effort does not

induce a higher payoff for the agent after time t, since as shown in (8.17), the

expected future cost over time (t, T ] is zero due to the martingale property.

Remark: When addressing the agent’s problem as shown in (O− A′), we adopt

the current aggregated income process Mt as a state variable. Though the form

of this process is not as succinct as Wt which is generally used (e.g., [124]), it

facilitates the characterization of the cumulative payment ct in Lemma 8.3. It also

shows that leveraging Mt can also yield the result.
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8.4 The Principal’s Problem: Optimal Dynamic

Systemic Cyber Risk Management

Our next goal is to characterize the dynamic contracts designed by the principal.

Furthermore, we present a separation principle and explicit solutions to an LQ case

in this section.

8.4.1 Rational Controllability

The controllability of the cyber risk is critical to the principal. To account for

the incentives in the management of risk, we have the following definition.

Definition 8.4 (Rational Controllability). The dynamic systemic cyber risk is

rationally controllable if the principal can provide incentives {pt}0≤t≤T and cT such

that the risk manager’s effort {Et}0≤t≤T coincides with the one suggested by the

principal.

In ODMD, the rational controllability indicates that under {{p∗t}0≤t≤T , c
∗
T},

the best-response behavior {E∗t }0≤t≤T of the agent is the same as the principal’s

predicted effort. The unique feature of rational controllability is that the principal

cannot control the cyber risk directly but can rely on other terms to infer the

rational behavior of the agent, which further influences the applied effort in risk

management. Corollary 8.1 later captures this result.
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8.4.2 Stochastic Optimal Control Reformulation

Knowing that the cyber risk manager behaves strategically, the principal aims

to implement E∗t and thus (8.16) becomes

dct =
rhA(Mt)

h′A(Mt)
dt−

fA
(
t, pt, E

∗
t

)
h′A(Mt)

dt− 1

2

h′′A(Mt)

h′A(Mt)

ζTt Σt(Yt)Σt(Yt)
Tζt

h′2A(Mt)
dt

− ptdt+
1

h′A(Mt)
ζTt Σt(Yt)dBt. (8.22)

Instead of dealing with the complex revenue dynamics (8.18) of the principal,

we deal with its equivalent counterpart dWt shown in Theorem 8.2 below, which

is much simpler. We reformulate the principal’s problem as a standard stochastic

optimal control problem as follows.

Theorem 8.2. The principal’s problem is reformulated as a stochastic optimal

control problem as follows:

(O− P′) : min
pt∈P, ζt

E
∫ T

0

e−rt
(
fP (t, Yt, pt)− e−r(T−t)pt

)
dt+ e−rT

(
hP (YT ) + h−1

A (WT )
)

such that dYt = AYtdt− E∗t dt+ Σt(Yt)dBt, Y0 = y0,

dWt = rWtdt− fA(t, pt, E
∗
t )dt+ ζTt Σt(Yt)dBt, W0 = JA,

E∗t = arg maxEt ζ
T
t Et − fA(t, pt, Et).

Proof. Recall that the expected cost of the cyber risk manager is equal to Wt =

hA(Mt). Then, under the optimal risk management effort, we obtain

dWt = rWtdt− fA(t, pt, E
∗
t )dt+ ζTt Σt(Yt)dBt, W0 = JA.

In addition, based on dct = dMt − ptdt, we have cT = MT −
∫ T

0
ptdt. Since
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MT = h−1
A (WT ), we have e−rT cT = e−rTh−1

A (WT )− e−rt
∫ T

0
e−r(T−t)ptdt. Thus, the

cost function of the principal can be rewritten as

E
∫ T

0

e−rt
(
fP (t, Yt, pt)− e−r(T−t)pt

)
dt+ e−rT

(
hP
(
YT ) + h−1

A (WT )
)
,

which yields the result.

In the investigated incomplete information situations, the principal preserves

the indirect controllability of systemic risk Yt by estimating the agent’s effort E∗t

as well as specifying the contract terms pt, cT and process ζt.

Corollary 8.1. By providing incentives {{pt}0≤t≤T , cT} and specifying process

{ζt}0≤t≤T , the dynamic systemic cyber risk is rationally controllable, and the incen-

tive compatible effort follows (8.21). The optimal {p∗t}0≤t≤T and {ζ∗t }0≤t≤T can be

obtained from Theorem 8.2.

Proof. The result directly follows from Theorems 8.1 and 8.2.

Remark: Theorem 8.2 presents solution to a standard optimal control problem

for the principal, whose the existence and uniqueness have been well studied [140].

With fP , hP , fA, and hA satisfying the conditions in Assumptions 8.1 and 8.2, and

the corresponding coefficients in the functions well selected ensuring the feasibility

of (O− P′), the control problem can be solved efficiently by numerical methods

[95]. Therefore, the ODMD for the systemic risk management problem, i.e., E∗t , p∗t ,

and c∗T , can be determined from (8.21), (8.22) and Theorem 8.2, respectively.
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8.4.3 Separation Principle

We next present a separation principle for the asset owner in determining the

compensation pt and the auxiliary parameter ζt. First, we make assumptions on

the separability of the cost functions.

(S1): The agent’s running cost can generally be separated into two parts,

including the effort and payment. Accordingly, we take fA(t, pt, Et) to be in the

form

fA(t, pt, Et) = fA,E(Et)− fA,p(pt), (8.23)

where fA,E : E → R+ is monotonically increasing, continuously differentiable and

strictly convex, i.e., f ′A,E(Et) > 0 and f ′′A,E(Et) > 0, and fA,p : P → R+. Then, the

constraint E∗t = arg maxEt ζ
T
t Et − fA(t, pt, Et) can be simplified to

E∗t = f ′−1
A,E(ζt). (8.24)

(S2): We also assume that the principal’s running cost takes the form

fP (t, Yt, pt) = fP,Y (Yt) + fP,p(pt), (8.25)

where fP,Y : RN → R and fP,p : P → R+ are monotonically increasing and

continuously differentiable.

The inverse function h−1
A plays a role in the principal’s objective. We further

have the following assumption.

(L1): The agent’s terminal cost function hA is linear, i.e., hA(MT ) = γMT ,

where γ < 0.

Then, we have the following separation principle.
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Theorem 8.3. Under conditions (S1), (S2), and (L1), the principal’s problem

(O− P′) can be separated into two subproblems with respect to the decision variables

ζt and pt as:

(SP1) : min
ζt

E
∫ T

0

e−rt
(
fP,Y (Yt)−

1

γ
fA,E

(
f ′−1
A,E(ζt)

))
dt

+ e−rThP (YT ) +
1

γ

∫ T

0

e−rtζTt Σt(Yt)dBt

such that dYt = AYtdt− f ′−1
A,E(ζt)dt+ Σt(Yt)dBt, Y0 = y0.

(SP2) : min
pt∈P

∫ T

0

e−rt
(
fP,p(pt)− e−r(T−t)pt +

1

γ
fA,p(pt)

)
dt.

Proof. For the constraint dWt = rWtdt−fA,E(f ′−1
A,E(ζt))dt+fA,p(pt)dt+ζ

T
t Σt(Yt)dBt,

we obtainWt = ertW0−
∫ t

0
er(t−s)[fA,E

(
f ′−1
A,E(ζs)

)
−fA,p(ps)]ds+

∫ t
0
er(t−s)ζTs Σs(Ys)dBs.

Thus, the principal’s problem can be rewritten as

min
pt∈P,ζt

E
∫ T

0

e−rt
(
fP,Y (Yt) + fP,p(pt)− e−r(T−t)pt

)
dt

+ e−rT
[
hP (YT ) + h−1

A

(
erTJA −

∫ T

0

er(T−s)fA,E
(
f ′−1
A,E(ζs)

)
ds

+

∫ T

0

er(T−s)fA,p(ps)ds+

∫ T

0

er(T−s)ζTs Σs(Ys)dBs

)]
such that dYt = AYtdt− f ′−1

A,E(ζt)dt+ Σt(Yt)dBt, Y0 = y0.

Then, the decomposition of the problem follows naturally.

Remark: ζt can be regarded as an estimation variable since it determines the

anticipated effort E∗t . The payment pt is a control variable that manipulates the

risk manager’s incentives and is determined at the control phase. Under appropriate

conditions, these two estimation and control variables can be designed in a separate
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manner, yielding a separation principle in dynamic contract design for systemic

risk management. The separation principle offers convenience and accelerates the

computation of contract terms for the asset owner. That is, instead of solving a

complicated stochastic control program, the asset owner can address two simpler

problems to design the optimal contract.

To obtain more insights, we next focus on a class of models where the value

function of the principal and the ODMD can be explicitly characterized.

8.4.4 ODMD in LQ Setting

In the LQ setting, the cost functions take forms as fA,E(Et) = 1
2
ET
t RtEt, and

fA,p(pt) = δApt, where Rt is a positive-definite N×N -dimensional symmetric matrix

and δA is a positive constant. Then we obtain

E∗t = f ′−1
A,E(ζt) = R−1

t ζt. (8.26)

Further, we consider hP (YT ) = ρTYT , where ρ ∈ RN+ maps the cyber risks to

monetary loss, and fP (t, Yt, pt) = ρTYt + δPpt, where δP is a positive constant. In

addition, hA(MT ) = −MT and Σt(Yt) = Dt · diag(Yt), where Dt ∈ RN×N and ‘diag’

is a diagonal operator. The principal’s problem becomes:

min
pt∈P,ζt

E
∫ T

0

e−rt(ρTYt + δPpt − e−r(T−t)pt)dt+ e−rT (ρTYT −WT )

such that dYt = (AYt −R−1
t ζt)dt+Dt · diag(Yt)dBt, Y0 = y0,

dWt =

(
rWt −

1

2
ζTt R

−1
t ζt + δApt

)
dt+ ζTt Σt(Yt)dBt, W0 = JA.

The principal aims to maximize WT , which is equivalent to minimizing the
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agent’s total revenue based on the relationship WT = −MT . The principal also

considers the agent’s participation constraint by setting W0 = W0 = JA, ensuring

that the cyber risk manager has sufficient incentive to fulfill the task.

Since e−rTWT = W0−
∫ T

0
e−rs

(
1
2
ζTs R

−1
s ζt − δAps

)
ds+

∫ T
0
e−rsζTs Ds·diag(Ys)dBs,

the principal’s problem can be rewritten as:

min
pt∈P,ζt

E
∫ T

0

e−rt
(
ρTYt + (δP − δA)pt − e−r(T−t)pt +

1

2
ζTt R

−1
t ζt

)
dt

+ e−rTρTYT − JA

such that dYt = (AYt −R−1
t ζt)dt+Dt · diag(Yt)dBt, Y0 = y0.

According to Theorem 8.3, the separation principle holds in the LQ case. To deter-

mine the optimal pt, we solve the following unconstrained optimization problem:

min
pt∈P

∫ T

0

e−rt(δP − δA − e−r(T−t))ptdt.

Depending on the values of parameters δP and δA, we obtain the following results.

If δP − δA ≥ 1, there is no intermediate payment, i.e., pt = 0, ∀t ∈ [0, T ]. In this

regime, the principal has a higher valuation on the monetary payment than the

agent does. In other words, the agent is relatively hard to be incentivized to do the

risk management. When δP − δA ≤ 0, i.e., the principal focuses more on the cyber

risk deduction rather than the expenditure on incentivizing the agent, the optimal

pt is positively unbounded. However, in this regime, the terminal payment cT is

negatively unbounded based on (8.22). This contract corresponds to the scenario

where the risk manager receives a large amount of intermediate payment during

the task while returning it to the principal after finishing the task which is not
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practical. Under 0 < δP − δA < 1, the intermediate compensation is either 0 or

unbounded depending on the time index. Hence, to design a practical contract,

we focus on the regime in which the intermediate payment is zero, and the risk

manager receives a positive terminal payment cT .

To obtain the optimal {ζ∗t }0≤t≤T , we assume that the process ζt, t ∈ [0, T ], is

non-anticipative, which can be verified later after obtaining the solution ζ∗t . Then,

the problem can be further simplified to:

min
ζt

E
∫ T

0

e−rt
(
ρTYt +

1

2
ζTt R

−1
t ζt

)
dt+ e−rTρTYT − JA

such that dYt = (AYt −R−1
t ζt)dt+Dt · diag(Yt)dBt, Y0 = y0.

The following theorem provides the optimal solution ζ∗t .

Theorem 8.4. In the LQ case, the optimal solution to the principal’s problem is

given by

ζ∗t = Kt, (8.27)

where Kt satisfies, and is the unique solution to

K̇t + (A− rI)TKt + ρ = 0, KT = ρ. (8.28)

Furthermore, the minimum cost of the principal is given by

J∗p = KT
0 y0 +m0 − JA, (8.29)
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where m0 is obtained uniquely from

ṁt − rmt −
1

2
KT
t R
−1
t Kt = 0, mT = 0. (8.30)

Proof. Without loss of generality, we solve the optimal control problem by ignoring

the constant term JA in the cost function. The HJB equation

min
ζt

[1

2
tr

(
∂2Vp
∂Y 2

t

Dt · diag(Yt) · diag(Yt)D
T
t

)
+
∂Vp
∂Yt

(
AYt −R−1

t ζt
)

+ρTYt +
1

2
ζTt R

−1
t ζt

]
+
∂Vp
∂t

= rVp,

Vp(T, YT ) = ρTYT , (8.31)

yields the first-order condition ζ∗t = ∂Vp
∂Yt

. Assume that the value function takes

the form: Vp(t, Y ) = 1
2
Y TStY + KT

t Y + mt, where St is an N × N symmetric

matrix with continuously differentiable entries, Kt is a continuously differentiable

N -dimensional vector, and mt is a continuously differentiable function. Then, we

obtain ζ∗t = StYt +Kt. Substituting ζ∗t into the HJB equation yields

1

2
tr
(
StDt · diag(Yt) · diag(Yt)D

T
t

)
+ (StYt +Kt)

T(AYt −R−1
t StYt −R−1

t Kt)

+ρTYt +
1

2
(StYt +Kt)

TR−1
t (StYt +Kt)

= r

(
1

2
Y T
t StYt +KT

t Yt +mt

)
− 1

2
Y T
t ṠtYt − K̇T

t Yt − ṁt,

Vp(T, YT ) = ρTYT .

(8.32)

Denote by I the N -dimensional identity matrix and by ei the N -dimensional vector

whose i-th element is 1 and the others are zero. Matching the coefficients in (8.32)
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further yields the following coupled ordinary differential equations (ODEs):

Ṡt + StA+ ATSt − rSt − StR−1
t St +

1

2

N∑
i=1

(
eie

T
i D

T
t StDt

)
= 0, ST = 0, (8.33)

K̇t + (A−R−1
t St − rI)TKt + ρ = 0, KT = ρ, (8.34)

ṁt − rmt −
1

2
KT
t R
−1
t Kt = 0, mT = 0. (8.35)

Here, (8.33) is a matrix Riccati equation. However, based on the terminal condition

ST = 0, we see that the unique solution to (8.33) is St = 0, ∀t. Therefore, a linear

value function Vp(t, Y ) = KT
t Y +mt is sufficient. Then, the ODEs (8.34) and (8.35)

can be rewritten as (8.28) and (8.30), respectively, which being linear admit unique

solutions.

We then obtain the explicit form of optimal dynamic contract in the subsequent

lemma.

Lemma 8.4. In the LQ case, the optimal dynamic contract designed by the principal

is given by

dct =

(
rct +

1

2
KT
t R
−1
t Kt

)
dt−KT

t

(
dYt − AYtdt+R−1

t Ktdt
)

=

(
rct −

1

2
KT
t R
−1
t Kt

)
dt−KT

t (dYt − AYtdt) , (8.36)

with c0 = −JA > 0, and Kt is given by (8.28). The intermediate payment pt

degenerates to zero, and the anticipated effort of the agent under the optimal

contract is E∗t = R−1
t Kt.

Proof. The result follows from Theorems 8.1, 8.4, and (8.22).

Remark: As shown in Lemma 8.4, the cyber risk volatility Σt(Yt) does not
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impact the optimal dynamic contract design, since the principal’s expected cost

is linear in the systemic risk Yt. When one of the functions fp, hA and hp is not

linear, the volatility Σt(Yt) will play a role in the contract design in solving the

problem presented in Theorem 8.2.

Even though the optimal dynamic contract does not depend on the cyber risk

volatility in the LQ case, the risk volatility influences the real compensation during

contract implementation.

Corollary 8.2. The terminal compensation of risk manager has a larger variance

when there are more complex interdependencies of risk uncertainties between nodes.

Corollary 8.2 will further be illustrated through case studies in Section 8.6.

8.5 Benchmark Scenario: Systemic Cyber Risk

Management under Full Information

In the full-information case, the principal observes the efforts that the cyber

risk manager implements. We first solve the team problem in which the agent

cooperates with the principal. To that end, the principal’s cost under the team

optimal solution is the best that he can achieve. Then, we aim to design a dynamic

contract mechanism under which the agent will adopt the same policy as the

team optimal one. In the cooperative case, the contract only needs to guarantee

the participation constraint. Then, the principal’s problem can be formulated as
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follows:

(O− B) : min
pt∈P,cT ,Et∈E

E
∫ T

0

e−rtfP (t, Yt, pt)dt+ e−rT (cT + hP (YT ))

such that dYt = AYtdt− Etdt+ Σt(Yt)dBt, Y0 = y0,

JA ({E∗t }0≤t≤T ; {pt}0≤t≤T , cT ) = JA.

As in the asymmetric information scenario, it is more convenient to deal with the

dynamics of the cyber risk manager’s expected cost. By designing the contract, the

principal only needs to ensure the participation of the agent. Then, the principal’s

problem can be rewritten as follows:

(O− B′) : min
pt∈P,ζt,Et∈E

E
∫ T

0

e−rt
(
fP (t, Yt, pt)− e−r(T−t)pt

)
dt

+ e−rT
(
hP
(
YT
)

+ h−1
A (WT )

)
such that dYt =AYtdt− Etdt+ Σt(Yt)dBt, Y0 = y0,

dWt =rWtdt− fA
(
t, pt, Et

)
dt+ ζTt Σt(Yt)dBt, W0 = JA.

With the full observation of Yt and Et, ζt can be chosen freely, and Et can be seen

as a control variable of the principal. Note that the IC constraint (8.21) does not

enter into (O− B′). In addition, the equivalent terminal payment process ct admits

the same form as (8.22). (O− B′) is a standard stochastic optimal control problem

which can be solved efficiently.

To quantify the efficiency of dynamic contract designed in Section 8.4, we have

the following definition.

Definition 8.5 (Information Rent). Denote the solutions to (O− A) and (O− P)

by {E∗t }0≤t≤T and {{p∗t}0≤t≤T , c
∗
T}, respectively. Further, denote the solution to
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(O− B) by {{pbt}0≤t≤T , c
b
T , {Eb

t}0≤t≤T}. Then, the information rent is given by

IR = JP ({p∗t}0≤t≤T , c
∗
T )− JP ({pbt}0≤t≤T , c

b
T ). (8.37)

Intuitively, information rent quantifies the difference between the principal’s

costs with optimal mechanisms designed under incomplete and full information.

We have following result on information rent.

Corollary 8.3. The optimal cost of the principal under full information is no

larger than the one under asymmetric information. Hence, IR ≥ 0.

Proof. Comparing with the optimal {E∗t }0≤t≤T in (O− P′), the implemented effort

{Eb
t}0≤t≤T in (O− B′) does not depend on the variables ζt and pt. Thus, (O− B′)

admits a larger feasible solution space, which yields the result.

8.5.1 LQ Setting: Certainty Equivalence Principle

To further characterize the optimal contracts under full information and quantify

the information rent, we investigate a class of special scenarios. Specifically, we take

the functions to have the same forms as in Section 8.4.4. The principal’s problem

can then be written as

min
pt∈P,Et∈E

E
∫ T

0

e−rt
(
ρTYt + (δP − δA)pt − e−r(T−t)pt +

1

2
ET
t RtEt

)
dt

+ e−rTρTYT − JA

such that dYt = (AYt − Et)dt+Dt · diag(Yt)dBt, Y0 = y0.

Note that ζt does not appear in the optimization problem. However, ζt enters

the designed contract (8.22) through the term −ζTt Σt(Yt)dBt. In the long term
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contracting when T is relatively large, the expected value of −ζTt Σt(Yt)dBt is zero

which is irrelevant with ζt. Hence, the principal can set ζt = 0 to reduce the contract

complexity.

Similar to the analysis in Section 8.4.4, we focus on the regime where the

intermediate payment flow pt is zero, to avoid the unrealistic situation of negative

terminal payment. We obtain the following lemma characterizing the certainty

equivalence principle.

Lemma 8.5. In the LQ settings, IR = 0 which reveals the certainty equivalence

principle, i.e., the designed optimal contracts under the incomplete information are

as efficient as those designed under complete information.

Proof. By regarding Et as the role of R−1
t ζt, we see that the problem is reduced

to the one in Section 8.4.4. Hence, the minimum cost of the principal in the full

information case is the same as that under the incomplete information.

Remark: When the agent’s terminal cost function hA is not linear, h−1
A (WT )

will not be linear in WT . Thus, the decision variable ζt remains in the principal’s

objective function. Then, the contract design under full information becomes

more efficient as there is no dependency between ζt and Et introduced by the IC

constraint.

In the LQ case, the team optimal contract is summarized as follows.

Lemma 8.6. In the LQ setting, the team optimal dynamic contract is

dcbt =

(
rcbt +

1

2
KT
t R
−1
t Kt

)
dt,

Eb
t = R−1

t Kt, (8.38)

with cb0 = −JA > 0, and Kt is given by (8.28). The intermediate payment is zero.
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Proof. The result follows immediately from Theorem 8.4 and (8.22) with ζt = 0.

The following lemma provides a mechanism that leads to implementation of the

team optimal solution presented in Lemma 8.6 without forcing the agent to follow

Eb
t .

Lemma 8.7. In the LQ setting, the implementable optimal dynamic contract

designed by the principal under full information is

dct =

(
rct −

1

2
KT
t R
−1
t Kt +KT

t Et

)
dt, (8.39)

with c0 = −JA > 0 and Kt given by (8.28). The intermediate payment is zero, and

the agent’s best response is Et = R−1
t Kt.

Proof. Similar to the methodologies proposed in [14, 15, 29], we let the contract

take the following form:

dct =

(
rct +

1

2
KT
t R
−1
t Kt

)
dt+ ΓT

t (Et −R−1
t Kt)dt, (8.40)

where Γt is an N -dimensional vector to be determined. The second term ΓT
t (Et −

R−1
t Kt)dt is introduced to penalize the agent when his action deviates from R−1

t Kt.

The agent solves his problem by responding to this announced contract from the

principal. Similar to (O− A′) and using Va(t, ct) = hA(ct) = −ct, we obtain the

corresponding HJB equations as

min
Et

[
∂Va
∂ct

(
rct +

1

2
KT
t R
−1
t Kt + ΓT

t (Et −R−1
t Kt)

)
+ fA(t, pt, Et)

]
+
∂Va
∂t

= rVa,

Va(T, cT ) = −cT .



266

The optimal solution of the agent is achieved at

Eo
t = arg minEt − ΓT

t Et +
1

2
ET
t RtEt,

which yields Eo
t = R−1

t Γt. Based on Lemma 8.6, we choose Γt = Kt, and thus the

agent implements the team optimal solution Eb
t . Further, (8.40) degenerates to the

one in (8.38).

Remark: In the LQ setting under full information and incomplete information,

the optimal contract and the manager’s behavior do not relate to the risk volatility

Σt(Yt) of the network. The reason is that the cost function of the principal is linear

in the systemic risk Yt. Hence, the expectation of the risk volatility term is zero,

and Σt(Yt) does not play a role in the optimal dynamic contract. This fact in turn

corroborates the zero information rent in the LQ setting due to the removal of risk

uncertainty.

A more general class of scenarios satisfying the certainty equivalence principle

that leads to zero information rent is summarized as follows.

Corollary 8.4. When fP (t, φ, pt), hp(φ) and hA(φ) are linear in the argument φ,

then IR = 0, where the optimal contracts under the full information and incomplete

information coincide.

Proof. The linearity of functions removes the effects of risk uncertainties on the

performance of the principal and the agent which leads to a zero information

rent.

Note that the certainty equivalence principle provides guidelines and insights

for the asset owner when outsourcing the cyber risk management tasks to the
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agent. Specifically, when proposing contracts, if the conditions in Corollary 8.4

are satisfied, the asset owner is confident that having access to the risk manager’s

hidden effort does not matter (due to certainty equivalence). Furthermore, in the

LQ setting, the asset owner can directly leverage the closed-form solution shown in

Lemma 8.7, which offers great convenience in contract design for systemic cyber

risk management.

8.6 Case Studies

We demonstrate, in this section, the optimal design principles of dynamic

contracts for systemic cyber risk management of enterprise networks through

examples. Specifically, we first utilize a case study with one node to show that

the dynamic contracts can successfully mitigate the systemic risk in a long period

of time. Then, we investigate an enterprise network with a set of interconnected

nodes to reveal the network effects in systemic risk management through dynamic

contracts and discover a distributed way of mitigating the systemic risks.

8.6.1 One-Node System Case

First, we consider a one-dimensional case in which the enterprise network

contains only one node, i.e., Yt is a scalar. Therefore, the risk manager protects

the system by directing the security resources to this node. Note that for the LQ

setting, the coupled ODEs in Theorem 8.4 admit the unique solutions:

Kt =
ρ

A− r
(
(A− r + 1)e(A−r)(T−t) − 1

)
, mt =

K2
t

2rRt

(
e−r(T−t) − 1

)
. (8.41)
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Therefore, based on Lemma 8.4, the optimal effort of the risk manager is

E∗t = R−1
t ζ∗t =

ρ

Rt(A− r)
(
(A− r + 1)e(A−r)(T−t) − 1

)
, (8.42)

and the optimal compensation becomes

dct =

(
rct −

K2
t

2Rt

+ AKtYt

)
dt−KtdYt, c0 = −JA. (8.43)

If the risk manager accepts this optimal contract, then the principal’s excepted

minimum cost is equal to J∗P = KT
0 y0 +m0 − JA.

To illustrate the optimal mechanism design, we choose specific values for the

parameters in Section 8.4.4: ρ = 5 k$/unit, r = 0.3, Rt = 1.5 k$/unit2, T = 1

year, y0 = 5 unit, and JA = −10 k$. Here, notation 1 k$/unit represents $1000

per unit. Figure 8.2 shows the results for varying values of the parameter A. Note

that a single node system with a larger A indicates that it is more vulnerable and

harder to mitigate the cyber risk. From Fig. 8.2, we find that with a larger A, the

system requires more effort from the risk manager to bring the cyber risk down to

a relatively low level. In all cases, the effort decreases as time increases, and finally

converges to a positive constant ρ
Rt

. This phenomenon indicates that when the

system risk is high, the agent should spend more effort in risk management. When

the risk is reduced to a relatively low level and the system becomes secure, then

less effort is preferable as the risk will not grow. In addition, the corresponding

terminal compensation cT increases with the amount of effort spent.
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(a) Effort (b) Systemic cyber risk

(c) Cumulative payment

Figure 8.2: (a), (b), and (c) show the effort, the cyber risk, and the terminal
payment under the optimal contract. The terminal compensation cT increases with
the spent effort of the risk manager.

8.6.2 Network Case

We next investigate cyber risk management over enterprise networks and char-

acterize the interdependencies between nodes. The unique solutions to the ODEs
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(a) Effort (b) Systemic cyber risk

(c) Cumulative payment

Figure 8.3: (a), (b), and (c) show the effort, the systemic risk, and the terminal
payment under the optimal contract. Case 1: A = [2, 0.2; 0, 2]; Case 2: A =
[2, 0.5; 0, 2]; Case 3: A = [2, 0.8; 0, 2]. A higher network connectivity requires more
effort to mitigate the systemic cyber risk.

in Theorem 8.4 are then as follows:

Kt = ρ
[
(A− rI)T

]−1
((

(A− rI)T + I
)
e(A−rI)T(T−t) − I

)
, (8.44)

mt =
KT
t R
−1
t Kt

2r

(
e−r(T−t) − 1

)
, (8.45)
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The optimal effort of the risk manager is

E∗t = R−1
t ρ

[
(A− rI)T

]−1
((

(A− rI)T + I
)
e(A−rI)T(T−t) − I

)
,

and the optimal compensation follows (8.36).

We first consider a cyber network containing two connected nodes. For conve-

nience, we adopt the form [a, b, c; d, e, f] to represent the matrix

a b c

d e f

 through-

out the following examples. The system parameters are chosen as ρ = [5; 5] k$/unit,

r = 0.3, Rt = [1.5, 0; 0, 1.5] k$/unit2, T = 1 year, y0 = [5; 5] unit, and JA = −10 k$.

Moreover, we compare three scenarios in terms of network interdependencies.

Specifically, we have case 1: A = [2, 0.2; 0, 2], case 2: A = [2, 0.5; 0, 2], and case 3:

A = [2, 0.8; 0, 2]. Figure 8.3 shows the results, where we denote by Ei∗
t and Y i

t the

effort and the corresponding risk of node i, i = 1, 2, respectively. Similar to the

single-node case, both the effort and systemic risk decrease over time. Specifically,

the dynamic effort converges to R−1
t ρ which can be verified directly by the analytical

expression. Comparing E1∗
t with E2∗

t , we find that the risk manager should spend

more effort on the nodes which can heavily influence other nodes. Even though

there is no risk influence from node 1 to node 2, the optimal effort E2∗
t increases as

the influence strength becomes larger from node 2 to node 1. This phenomenon

is consistent with the idea of controlling the origin to constrain the propagation

of cyber risks. Furthermore, the value of E2∗
t indicates that a higher network

connectivity requires more effort to mitigate the systemic cyber risk.

We next investigate a 4-node system where the network structures are shown in

Fig. 8.4. The system parameters are the same as those in the 2-node case except

for the matrix A. The diagonal entries in A are all equal to 2 and the off-diagonal
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Figure 8.4: Three different structures of enterprise network. The risk influence
strengths are the same, admitting a value of 0.2 in matrix A.

(a) Effort (b) Systemic cyber risk

(c) Cumulative payment

Figure 8.5: (a), (b), and (c) show the effort, the systemic risk and the terminal
payment under the optimal contract. Each node is self-accountable for its risk
influence on others.



273

(a) (b)

Figure 8.6: (a) and (b) depict the optimal terminal payment under different risk
volatility structure. The risk volatility of nodes is independent in (a), while the
influence of risk volatility in (b) admits a cycle structure as case 2 in Fig. 8.4.
The results indicate that a larger interdependency of cyber risk volatility yields
compensation schemes with a larger variance.

entries that correspond to a link are all equal to 0.2. Figure 8.5 shows the results

under the optimal mechanism. The risk manager spends more effort on node 1

in cases 2 and 3 than in case 1, as the risk of node 1 can propagate to node 4 in

the former two cases. Another key observation is that the amount of allocated

effort on each node mainly depends on its risk influences on other nodes rather

than on the exogenous risks (node’s outer degree), yielding a self-accountable risk

mitigation scheme. For example, even though node 4 impacts node 2 in case 3, the

risk management efforts on node 2 are close in cases 2 and 3. A similar pattern

can be seen on node 4 in cases 1 and 2. This observation provides a distributed

method of risk management which reduces the complexity of decision-making by

simplifying the network structures and classifying the nodes based on their outer

degrees. By comparing three cases, we also conclude that more complex cyber

interdependencies induce higher cost on the principal in the security investment.

Note that in the above case studies, all variables were evaluated under the
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expectation with respect to the cyber risk uncertainty. As shown in Corollary

8.2, even though the expected compensation is independent of the network risk

uncertainty, the actual compensation during contract implementation is influenced

by the volatility term Σt(Yt). We present two scenarios in Fig. 8.6, where Fig.

8.6(a) and Fig. 8.6(b) are the compensation realizations under Σt(Yt) = I and

Σt(Yt) = [1, 1, 0, 0; 0, 1, 1, 0; 0, 0, 1, 1; 1, 0, 0, 1], respectively. When the nodes’ risks

face more sources of uncertainties in Fig. 8.6(b), the corresponding payment exhibits

a larger variance comparing with the one in Fig. 8.6(a), which is consistent with

the result of Corollary 8.2.

8.7 Summary

In this chapter, we have addressed the problem of dynamic systemic cyber

risk management of enterprise networks, where the principal provides contractual

incentives to the manager, which include the compensations of direct cost of effort

and indirect cost from risk uncertainties. This has involved a stochastic Stackelberg

differential game with asymmetric information in a principal-agent setting. Under

the optimal incentive compatible scheme we have designed, the principal has rational

controllability of the systemic risk where the suggested and adopted efforts coincide,

and the risk manager’s behavior is strategically neutral, depending only on the

current net cost. Under mild conditions, we have obtained a separation principle

where the effort estimation and the remuneration design can be separately achieved.

We further have revealed a certainty equivalence principle for a class of dynamic

mechanism design problems where the information rent is equal to zero. Through

case studies, we have identified the network effects in the systemic risk management
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where the connectivity and node’s outer degree play an important role in the

decision making. Future work on this topic would consider cyber risk management

of enterprise networks under Markov jump risk dynamics. Another interesting

direction of future work would be to incorporate the renegotiation option in the

contract, which is a practical consideration in the risk management application.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this dissertation, I have investigated in detail the secure and resilient design

of high-confidence CPS networks from a cross-disciplinary perspective. Figure 9.1

depicts an overview of my research on the theme of CPS security and resilience. To

achieve the goal, I have focused on three critical aspects including network design,

trustworthy decision making, and network economics. The distinct challenges

arising from CPS, including large-scale networks, massive connectivity, and complex

interdependencies have been addressed. This dissertation has analyzed trustworthy

CPS network design across different dimensions: from single-layer network to

multi-layer networks, from static networks to dynamic systems, from fully rational

decision making to bounded rational strategies, and from risk self-mitigation scheme

to delegated risk transfer. We summarize this dissertation as follows.

Chapters 3 and 4 have been devoted to the strategic CPS network design. In

Chapter 3, we have proposed a two-layer heterogeneous framework for IoT networks
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Figure 9.1: Overview of my Ph.D. research on the theme of CPS security and
resilience.

consisting of various devices, where each layer network faces different levels of

cyber threats. By utilizing the tools from graph theory and optimization, we have

analyzed the lower bounds of the number of required links for the IoT network

being connected. We have also derived optimal strategies for creating secure two-

layer IoT networks with heterogeneous security requirements and provided their

constructive algorithms. In Chapter 4, we have focused on analyzing the dynamic

interplay between the network defender and attacker over infrastructure networks.

We have proposed a two-player three-stage dynamic game framework to study the

infrastructure network security and resiliency. Furthermore, we have provided a

complete analysis of the subgame perfect Nash equilibrium of the dynamic game

which includes the defense and recovery strategies of the network defender and the



278

attacking strategy of the adversary.

Chapters 5 and 6 have been focused on the trustworthy decision making in CPS

networked systems. Specifically, Chapter 5’s goal is to investigate the human’s

irrational behavior during security investment. To that end, we have proposed

a holistic framework to study the security management of users with bounded

rationality in the IoT networks, where the limited cognition of users has been

modeled through a sparse vector. We also have designed a proximal-based algorithm

to compute the solution which contains security management strategy and cognitive

network of agents. The algorithm has discovered several phenomena including

emergence of partisanship, filling the inattention, and attraction of the mighty.

Our focus in Chapter 6 has been shifted from static CPS networks to dynamic

networked systems. Specifically, we have established a games-in-games framework

that enables uncoordinated and secure control of multi-layer autonomous systems

under cyberattacks. Furthermore, we have proposed a meta-equilibrium solution

concept to capture the interdependent decision makings of network players in a

holistic fashion, and characterized the strategic behavior of the attacker explicitly. A

resilient and decentralized iterative algorithm has been proposed that can maximize

the connectivity of the networked autonomous systems.

Chapters 7 and 8 have been devoted to enhancing CPS security using a mecha-

nism design approach. In Chapter 7, we have used contract design principles to

propose an integrative cyber-physical framework to develop a holistic incentive-

compatible and cost-efficient security as a service mechanism for real-time operation

of cloud-enabled Internet of controlled things under advanced persistent threats.

We have composed a game modeling cloud security with the contract design through

a bi-level game model to capture the strategic interactions between the service
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provider, the service requester, and the adversary. Further, we have proposed

iterative algorithms to compute the optimal cyber-physical contract. In Chapter 8,

we have focused on dynamic mechanism design for systemic cyber risk management

of enterprise networks under the hidden-action type of incomplete information. To

characterize the solution, we have provided a systematic methodology by trans-

forming the problem into a stochastic optimal control problem with compatible

information structures. We have also identified several important rules, including a

separation principle and a certainty equivalence principle for a class of dynamic

mechanism design problems. The proposed approach has been corroborated to be

effective in the cyber risks transfer.

9.2 Future Work

There are many exciting research directions that can be explored further beyond

the focuses of this dissertation. An important one is the design of intelligent and

high-confidence next-generation large-scale CPS networks, as they will pervade

more facets of our life in the coming decades. It is also critical to expedite CPS

realizations with built-in security, resilience, and intelligence in a wide range of

applications including robotic operations, transportation systems, manufacturing

systems, and smart grids. To achieve these goals, there are a number of new areas to

be explored, including security of learning algorithms for complex CPS, distributed

AI for large-scale societal CPS, and cyber deception for proactive CPS security.



280

High-confidence ML for 
autonomous systems

Distributed learning for 
large-scale societal CPS

Cyber deception & 
learning

AI Attacker

AI-1

AI-2

Human-robot collaboration 
in battlefield

Honeypots

Servers

AI and Learning for CPS Security

Figure 9.2: Future research directions on AI and learning for high-confidence CPS.

9.2.1 High-Confidence Real-Time Machine Learning for Au-

tonomous Systems

Reinforcement learning (RL) has been shown powerful in many decision making

problems with partial or unknown information, ranging from computer games

to control of engineering systems. RL algorithms have also been applied to CPS

which enables real-time data-driven control, improving the CPS resilience to failures.

However, the integration of RL mechanisms with CPS creates new security concerns.

For example, the adversary can obscure and manipulate the data (possibly collected

by sensors) that are required during determining online decisions, which poses a

substantial threat to CPS especially in the mission-critical applications such as

autonomous driving and Internet of battlefield things. Therefore, RL algorithms

should be reliable and secure enough to guarantee a satisfactory performance when

applied to CPS in the adversarial environment. The goal is to lay a theoretical and

computational-efficient foundation to assure that RL algorithms can be deployed

in the autonomous systems with high confidence. This endeavor starts with under-
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standing adversarial behaviors in RL synthesis with dynamic CPS and establishing

frameworks to quantify the impacts of attacks to RL algorithms, which are essential

to the development of countermeasures against strategic and stealthy attacks. It

is possible to implement the developed provably-secure RL algorithms on mobile

autonomous cars, which have a substantial market ($556.67 billion by 2026), to

test practical cyberattacks, e.g., delayed signal and falsified data during feedback

on-line decision making.

9.2.2 Distributed Learning for Large-Scale Human-in-the-

Loop CPS

Classical ML algorithms are generally designed to optimize a single performance

criterion based on expected utility theory. However, this framework cannot be

directly applied to the modern CPS that often cooperate and interact closely with

humans. One major reason is that, different from cyber and physical components,

human’s valuations on gains and losses are different due to emotional and cognitive

biases; i.e., human’s preferences are inconsistent with expected utilities. To capture

the hybrid and heterogeneous features of modern CPS, we need to develop human-

centered ML algorithms applicable to societal CPS, where humans could interact

with the CPS directly. Besides the human factor consideration, another challenge

to deal with is the efficiency of learning algorithms applied to the control of

large-scale CPS due to the curse of dimensionality. Thus, the development of

distributed and scalable federated learning algorithms for dynamic operations of

large-scale CPS becomes critical. One possible idea is to first divide the CPS network

into subnetworks based on the online data using statistical inference and learning

methods. This partitioning is possible as large-scale CPS exhibit many redundancies



282

in their dynamics. Then, the control policy can be learned independently for each

subnetwork, and composed to achieve the global optimal objective. The broader

application of this research lies in the multi-agent human-robot interaction, such as

a group of aerial robots collaborating with another group of soldiers to accomplish

missions in the battlefield.

9.2.3 Cyber Deception for Proactive CPS Security

Deception has played a crucial role in the history of military combat and Sun

Tzu has said: all warfare is based on deception. The philosophy still holds in the

modern days. There is a growing amount of interest from security and defense

sectors national-wide on the investigation and design of deceptive mechanisms in

safeguarding the cyberspace. To this end, the first challenge is to scientifically

model the attacker’s behavior and quantify the corresponding impacts to the system.

The other one is that the designed defensive mechanism should be robust under

incomplete information and adaptive to the evolution of attacks. By leveraging

game theory and AI, it is possible to develop a systematic framework to under-

stand deceptions and counterdeceptions, and design new data-driven autonomous

mechanisms to mitigate cyber risks using strategic learning algorithms. This re-

search direction is a new avenue toward building high-confidence CPS with built-in

proactive security.
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